Acknowledgement
The authors are grateful to the referees and the editor for their valuable suggestions and remarks that definitely improved the paper. The first and second authors would like to thank the Integral University, Lucknow, India, for providing the manuscript number IU/R&D/2022-MCN0001465 to the present work. The third author also acknowledges the authority of Jazan University for the continuous support and encouragement to carry out this research work.
References
- A.A. Aqeel, U.C. De and G.C. Ghosh, On Lorentzian para-Sasakian manifolds, Kuwait J. Sci. Eng. 31 (2004), 1-13.
- A.M. Blaga and S. Deshmukh, Einstein solitons with unit geodesic potential vector field, AIMS Mathematics 6 (2021), 7961-7970. https://doi.org/10.3934/math.2021462
- D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer Verlag, 509, 1976.
- G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94. doi:10.1016/j.na.2015.10.021
- S.K. Chaubey and Y.J. Suh, Characterizations of Lorentzian manifolds, J. Math. Phys. 63 (2022), 062501.
- U.C. De, J.B. Jun and A.A. Shaikh, On conformally flat LP-Sasakian manifolds with a coefficient α, Nihonkai Math. J. 13 (2002), 121-131.
- U.C. De, K. Matsumoto and A.A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina 3 (1999), 149-158.
- D. Ganguly, S. Dey and A. Bhattacharyya, On trans-Sasakian 3-manifolds as η-Einstein solitons, Carpathian Math. Publ. 13 (2021), 460-474. https://doi.org/10.15330/cmp.13.2.460-474
- A. Ghosh and D.S. Patra, *-Ricci soliton within the frame-work of Sasakian and (K, µ)-contact manifold, Int. J. Geom. Methods in Mod. Phys. 15 (2018), 21 pages.
- T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25 (2002), 473-483. https://doi.org/10.3836/tjm/1244208866
- A. Haseeb and M.A. Akyol, On ϵ-Kenmotsu 3-manifolds admitting *-conformal η-Ricci solitons, Balkan Journal of Geometry and Its Applications 26 (2021), 1-11.
- A. Haseeb and H. Almusawa, Some results on Lorentzian para-Kenmotsu manifolds admitting η-Ricci solitons, Palestine Journal of Mathematics 11 (2022), 205-213.
- A. Haseeb and S.K. Chaubey, Lorentzian para-Sasakian manifolds and *-Ricci solitons, Kragujevac J. Math. 48 (2024), 167-179.
- B. Jahanara, S. Haesen, Z. Senturk, and L. Verstraelen, On the parallel transport of the Ricci curvatures, Journal of Geometry and Physics 57 (2007), 1771-1777. https://doi.org/10.1016/j.geomphys.2007.02.008
- G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413. https://doi.org/10.1016/j.geomphys.2014.09.004
- P. Majhi, U.C. De and Y.J. Suh, *-Ricci solitons on Sasakian 3-manifolds, Publ. Math. Debrecen 93 (2018), 241-252. https://doi.org/10.5486/PMD.2018.8245
- K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151-156.
- K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor(N.S.) 47 (1988), 189-197.
- I. Mihai and R. Rosca, On Lorentzian P-Sasakian Manifolds, Classical Analysis, World Scientific, Singapore, 1992, 155-169.
- V.A. Mirjoyan, Structure theorems for Riemannian Ricci semisymmetric spaces, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika 6 (1992), 80-89.
- B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- C. Ozgur, M. Ahmad and A. Haseeb, CR-submanifolds of a Lorentzian pra-Sasakian manifold with a semi-symmetric metric connection, Hacettepe J. of Math. and Stat. 39 (2010), 489-496.
- D.G. Prakasha and P. Veeresha, Para-Sasakian manifolds and *-Ricci solitons, Afr. Mat. 30 (2018), 989-998. https://doi.org/10.1007/s13370-019-00698-9
- A.A. Shaikh and K.K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 49 (2006), 193-205.
- A.A. Shaikh and S. Biswas, On LP-Sasakian manifolds, Bull. Malaysian Math. Sc. Soc. (Second Series) 27 (2004) 17-26.
- M.D. Siddiqi and S.K. Chaubey, η-Einstein solitons on (ϵ)-Kenmotsu manifolds, Kyungpook Math. J. 60 (2020), 805-819.
- S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11 (1959), 247-265.
- Venkatesha, D.M. Naik and H.A. Kumara, *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds, Mathematica Slovaca 69 (2019), 1447-1458. https://doi.org/10.1515/ms-2017-0321
- K. Yano, On torse-forming direction in Riemannian space, Proc. Imp. Acad. Tokyo 20 (1944), 340-345.
- A. Yildiz, U.C. De and E. Ata, On a type of Lorentzian para-Sasakian manifolds, Math. Reports 16 (2014), 61-67.