DOI QR코드

DOI QR Code

THE STUDY OF *-RICCI TENSOR ON LORENTZIAN PARA SASAKIAN MANIFOLDS

  • M. R. Bakshi (Department of Mathematics, Salesian College) ;
  • T. Barman (Department of Mathematics, Raiganj University) ;
  • K. K. Baishya (Department of Mathematics, Kurseong College)
  • Received : 2023.05.15
  • Accepted : 2023.09.29
  • Published : 2024.03.20

Abstract

We consider the *-general critical equation on LP Sasakian manifolds, and show that such a manifold is generalized η-Einstein. After then, we consider LP Sasakian manifolds with *-conformally semisymmetric condition, and show that such manifolds are *-Einstein. Moreover, we show that the *-conformally semisymmetric LP Sasakian manifold is locally isometric to En+1(0) × Sn(4).

Keywords

Acknowledgement

Authors would like to thank the referees for his/her suggestions to improve the manuscript. The second named author gratefully acknowledges UGC (NTA Ref. No. 211610054686), for financial assistance.

References

  1. K. K. Baishya and P. R. Chowdhury, Semi-symmetry type LP-Saskian manifolds, Acta Math. Acad. Paedagog. Nyiregyhaziensis. 33 (2017), no. 1, 67-83.
  2. K. K. Baishya and M. R. Bakshi, Critical metric equation on α-cosymplectic manifolds, J. Anal. 31 (2023), 871-880.
  3. K. K. Baishya, M. R. Bakshi and A. Biswas, On generalized weakly (Ricci) phisymmetric LP Sasakian manifolds, Novi Sad J Math. 51 (2021), no. 2, 89-105.
  4. K. K. Baishya and P. R. Chowdhury, On almost generalized weakly symmetric LP-Sasakian manifolds, Annals of West University of Timisoara - Mathematics and Computer Science 55 (2017), no. 2, 51-64.
  5. M. R. Bakshi, A. Das and K. K. Baishya, Existence of hyper generalized weakly symmetric Lorentzian para-Sasakian manifold, Acta Universitatis Apulensis 65 (2021), 51-66.
  6. M. R. Bakshi, K. K. Baishya, M. Pain and H. Kundu, Existence of some critical metrics on certain type of GRW-spacetime, submitted.
  7. A. M. Blaga, η-Ricci solitons on LP Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496. https://doi.org/10.2298/FIL1602489B
  8. D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J. 29 (1977), 319-324. https://doi.org/10.2748/tmj/1178240602
  9. A. E. Fischer and J. E. Marsden, Manifolds of Riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484. https://doi.org/10.1090/S0002-9904-1974-13457-9
  10. A. E. Fischer and J. E. Marsden, Deformations of the scalar curvature, Duke Math. J. 42 (1975), no. 3, 519-547.
  11. A. Ghosh and D. S. Patra, ∗-Ricci soliton within the frame-work of Sasakian and (κ, µ)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 7, 1850120.
  12. T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor, Tokyo J. Math. 25 (2002), no. 2, 473-483. https://doi.org/10.3836/tjm/1244208866
  13. A. Haseeb and S. K. Chaubey, Lorentzian Para Sasakian Manifolds and ∗-Ricci Solitons, Kragujev. J. Math. 48 (2024), no. 2, 167-179.
  14. S. K. Hui, S. Uddin, C. Ozel and A. A. Mustafa, Warped product submanifolds of LP-Sasakian manifolds, Discrete Dynamics in Nature and Society Vol. 2012, Article ID 868549, doi: 10.1155/2012/868549.
  15. G. Kaimakamis and K. Panagiotidou, On a new type of tensor on real hypersurfaces in nonflat complex space forms, Symmetry 11 2019, no. 4, 559; https://doi.org/10.3390/sym11040559.
  16. K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
  17. K. Matsumoto, I. Mihai and R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc. 32 (1995), no. 1, 17-31.
  18. P. Miao and L. F. Tam, On the volume functional of compact manifolds with boundary with constant scalar curvature, Calc. Var. Partial Differential Equations 36 (2009), no. 2, 141-171. https://doi.org/10.1007/s00526-008-0221-2
  19. I. Mihai and R. Rosca, On Lorentzian P-Sasakian manifolds, Classical analysis (Kazimierz Dolny, 1991), 155-169, World Sci. Publ. River Edge, NJ, 1992.
  20. A. A. Shaikh and K. K. Baishya, Some results on LP-Sasakian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49 (2006), no. 2, 193-205.
  21. A. A. Shaikh and K. K. Baishya, On ϕ-symmetric LP-Sasakian manifolds, Yokohama Math. J. 52 (2006), no. 2, 97-112.
  22. A. A. Shaikh, D. W. Yoon, and S. K. Hui, On quasi-Einstein spacetimes, Tsukuba J. Math. 33 (2009), no. 2, 305-326.
  23. A. A. Shaikh, Y. H. Kim, and S. K. Hui, On Lorentzian quasi-Einstein manifolds, J. Korean Math. Soc. 48 (2011), no. 4, 669-689. https://doi.org/10.4134/JKMS.2011.48.4.669
  24. T. Pal, S. S. Shukla, and S. K. Hui, v-pointwise bi-slant Lorentzian submersions from LP-Sasakian manifolds, Afrika Mathematika 32 (2021), 1341-1354. https://doi.org/10.1007/s13370-021-00903-8
  25. S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11 (1959), no. 2, 247-265.
  26. V. Venkatesha, D. M. Naik, and H. A. Kumara, ∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds, Math. Slovaca 69 (2019), no. 6, 1447-1458. https://doi.org/10.1515/ms-2017-0321
  27. V. Venkatesha and H. A. Kumara, ∗-Weyl curvature tensor within the framework of Sasakian and (κ, µ)-contact manifolds, Tamkang J. Math. 52 (2021), no. 3, 383-395.
  28. A. Yildiz, U. C. De, and E. Ata, On a type of Lorentzian Para-Sasakian manifolds, Math. Reports 16 (2014), no. 66, 61-67.