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Abstract. In this study we consider φ−conformally flat, φ−conharmonically flat, φ−projectively

flat and φ−concircularly flat Lorentzian α−Sasakian manifolds. In all cases, we get the

manifold will be an η−Einstein manifold.

1. Introduction

Let (Mn, g), n = dimM > 3, be connected semi Riemannian manifold of class
C∞ and ∇ be its Levi-Civita connection. The Riemannian-Christoffel curvature
tensor R, the Weyl conformal curvature tensor C (see [19]), the conharmonic cur-
vature tensor K (see [9]), the projective curvature tensor P (see [19]) and the
concircular curvature tensor C̃ (see [19]) of (Mn, g) are defined by

(1.1) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

C(X,Y )Z = R(X,Y )Z

+
1

n− 2

[
S(X,Z)Y − S(Y,Z)X + g(X,Z)QY − g(Y, Z)QX

]
− τ

(n− 1)(n− 2)
[g(X,Z)Y − g(Y, Z)X] ,

(1.2)

K(X,Y )Z = R(X,Y )Z

− 1

n− 2

[
S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

]
,

(1.3)
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(1.4) P (X,Y )Z = R(X,Y )Z − 1

n− 1
[g(Y,Z)QX − g(X,Z)QY ],

(1.5) C̃(X,Y )Z = R(X,Y )Z − τ

n(n− 1)
[g(Y, Z)X − g(X,Z)Y ].

respectively, where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ), S is
the Ricci tensor, τ = tr(S) is the scalar curvature and X,Y, Z ∈ χ(M), χ(M) is
being Lie algebra of vector fields of M.

In [17], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing ξ is a constant, say c. He showed
that they can be divided into three classes:

(1) homogeneous normal contact Riemannian manifolds with c > 0,
(2) global Riemannian products of a line or a circle with a Kaehler manifold of

constant holomorphic sectional curvature if c = 0,
(3) a warped product space R ×f C if c < 0. It is known that the manifolds

of class (1) are characterized by admitting a Sasakian structure. Kenmotsu [11]
characterized the differential geometric properties of the manifolds of class (3);
the structure so obtained is now known as Kenmotsu structure. In general, these
structures are not Sasakian [14].

In the Gray-Hervella classification of almost Hermitian manifolds [8], there ap-
pears a class, W4, of Hermitian manifolds which are closely related to locally confor-
mal Kaehler manifolds [10]. An almost contact metric structure on a manifold M is
called a trans-Sasakian structure [13] if the product manifold M ×R belongs to the
class W4. The class C6⊕C5 ([13],[14]) coincides with the class of the trans-Sasakian
structures of type (α, β). In fact, in [13], local nature of the two subclasses, namely,
C5 and C6 structures, of trans-Sasakian structures are characterized completely.

Also, in [15], Özgür and De studied quasi-conformally flat and quasi-conformally
semisymmetric Kenmotsu manifolds. Then, in [20], Yıldız and Murathan studied
Lorentzian α−Sasakian manifolds.

We note that trans-Sasakian structures of type (0, 0), (0, β) and (α, 0) are cosym-
plectic [2], β−Kenmotsu [11] and α−Sasakian [11] respectively. In [18] it is proved
that trans-Sasakian structures are generalized quasi-Sasakian. Thus, trans-Sasakian
structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (φ, ξ, η, g) on M is called a trans-Sasakian
structure [13] if (M × R, J, G) belongs to the class W4[8], where J is the almost
complex structure on M × R defined by

J(X, fd/dt) = (φX − fξ, η(X)d/dt),

for all vector fields X on M and smooth functions f on M × R , and G is the
product metric on M × R . This may be expressed by the condition [3]

(1.6) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),
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for some smooth functions α and β on M , and we say that the trans-Sasakian
structure is of type (α, β).

From (1.6) it follows that

(1.7) ∇Xξ = −αφX + β(X − η(X)ξ),

(1.8) (∇Xη)Y = −αg(φX, Y ) + βg(φX,φY ).

Trans-Sasakian manifolds have been studied by De and Tripathi [7] and they ob-
tained the following results:

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ) + 2αβ(η(Y )φX − η(X)φY )

+ (Y α)φX − (Xα)φY + (Y β)φ2X − (Xβ)φ2Y,

(1.9)

R(ξ, Y )X = (α2 − β2)(g(X,Y )ξ − η(X)Y ) + 2αβ(g(φX, Y )ξ − η(X)φY )

+ (Xα)φY + g(φX, Y )(gradα)

+ (Xβ)(Y − η(Y )ξ)− g(φX,φY )(gradβ),

(1.10)

(1.11) R(ξ,X)ξ = (α2 − β2 − ξβ)(η(X)ξ −X),

(1.12) 2αβ + ξα = 0,

(1.13) S(X, ξ) = ((n− 1)(α2 − β2)− ξβ)η(X)− (n− 2)Xβ − (φX)α,

(1.14) Qξ = ((n− 1)(α2 − β2)− ξβ)ξ − (n− 2)gradβ + φ(gradα).

Definition 1.1. A trans-Sasakian structure of type (α, β) is α-Sasakian if β = 0
and α nonzero constant [10].

If α = 1, then α-Sasakian manifold is a Sasakian manifold.

2. Lorentzian α−Sasakian manifolds

A differentiable manifold of dimension n is called Lorentzian α−Sasakian man-
ifold if it admits a (1, 1)−tensor field φ, a contravariant vector field ξ, a covariant
vector field η and Lorentzian metric g which satisfy ([2], [5], [6], [7], [8], [12])

(2.1) η(ξ) = −1,

(2.2) φ2 = I + η ⊗ ξ,
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(2.3) g(φX,φY ) = g(X,Y ) + η(X)η(Y ),

(2.4) g(X, ξ) = η(X),

φξ = 0, η(φX) = 0,

for all X,Y ∈ TM.
From (1.7) and (1.8), a Lorentzian α−Sasakian manifold M is satisfying

(2.5) ∇Xξ = −αφX,

(2.6) (∇Xη)Y = −αg(φX, Y ),

where∇ denotes the operator of covariant differentation with respect to the Lorentzian
metric g.

A Lorentzian α−Sasakian manifoldM is said to be η−Einstein if its Ricci tensor
S is of the form

(2.7) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for any vector fields X,Y , where a, b are functions on M.
Further, from equations (1.9)-(1.14) on a Lorentzian α−Sasakian manifold M

the following relations hold:

(2.8) R(ξ,X)Y = α2(g(X,Y )ξ + η(Y )X),

(2.9) R(X,Y )ξ = α2(η(Y )X + η(X)Y ),

(2.10) R(ξ,X)ξ = α2(η(X)ξ +X),

(2.11) S(X, ξ) = (n− 1)α2η(X),

(2.12) Qξ = (n− 1)α2ξ,

(2.13) S(ξ, ξ) = −(n− 1)α2,

(2.14) S(φX,φY ) = S(X,Y ) + (n− 1)α2η(X)η(Y ).
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3. Main results

In this section we consider φ−conformally flat, φ−conharmonically flat, φ−projectively
flat and φ−concircularly flat Lorentzian α−Sasakian manifolds.

Let C be the Weyl conformal curvature tensor of Mn. Since at each point
p ∈ Mn the tangent space Tp(M

n) can be decomposed into direct sum Tp(M
n) =

φ(Tp(M
n)) ⊕ L(ξp), where L(ξp) is a 1−dimensional linear subspace of Tp(M

n)
generated by ξp, we have map:

C : Tp(M
n)× Tp(M

n)× Tp(M
n) → φ(Tp(M

n))⊕ L(ξp).

It may natural to consider the following particular cases:
(1) C : Tp(M

n) × Tp(M
n) × Tp(M

n) → L(ξp), that is, the projection of the
image of C in φ(Tp(M

n)) is zero.
(2) C : Tp(M

n)× Tp(M
n)× Tp(M

n) → φ(Tp(M
n)), that is, the projection of

the image of C in L(ξp) is zero.
(3) C : φ(Tp(M

n)) × φ(Tp(M
n)) × φ(Tp(M

n)) → L(ξp), that is, when C is
restricted to Tp(M

n) × φ(Tp(M
n)) × φ(Tp(M

n)),the projection of the image of C
in φ(Tp(M

n)) is zero. This condition is equivalent to

(3.1) φ2C(φX,φY )φZ = 0,

(see [4]).

Definition 3.1. A differentiable manifold (Mn, g), n > 3, satisfying the condition
(3.1) is called φ−conformally flat.

The cases (1) and (2) were considered in [21] and [22], respectively. The case
(3) was considered in [6] for the case M is a K−contact manifold and in [16] for
the case M is a Lorentzian para-Sasakian manifold.

Furthermore in [1], Arslan, Murathan and Özgür studied (k, µ)−contact metric
manifolds satisfying (3.1). Now our aim is to find the characterization of Lorentzian
α−Sasakian manifolds satisfying the condition (3.1).

Theorem 3.2. Let Mn be an n−dimensional, (n > 3), φ−conformally flat Lorentzian
α−Sasakian manifold. Then Mn is an η−Einstein manifold.

Proof. Suppose that (Mn, g), n > 3, is a φ−conformally flat Lorentzian α−Sasakian
manifold. It is easy to see that φ2C(φX,φY )φZ = 0 holds if and only if

(3.2) g(C(φX,φY )φZ,φW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). So by the use of (1.2) φ−conformally flat means

g(R(φX,φY )φZ,φW )

=
1

n− 2
[g(φY, φZ)S(φX,φW )− g(φX,φZ)S(φY, φW )

+ g(φX,φW )S(φY, φZ)− g(φY, φW )S(φX,φZ)]

− τ

(n− 1)(n− 2)
[g(φY, φZ)g(φX,φW )− g(φX,φZ)g(φY, φW )].

(3.3)
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Let {e1, ..., en−1, ξ} be a local orthonormal basis of vector fields in Mn. Using
that {φe1, ..., φen−1, ξ} is also a local orthonormal basis, if we put X = W = ei in
(3.3) and sum up with respect to i, then

n−1∑
i=1

g(R(φei, φY )φZ,φei)

=
1

n− 2

n−1∑
i=1

[g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)

+ g(φei, φei)S(φY, φZ)− g(φei, φY )S(φei, φZ)]

− τ

(n− 1)(n− 2)

n−1∑
i=1

[g(φY, φZ)g(φei, φei)− g(φei, φZ)g(φY, φei)].

(3.4)

It can be easily verify that

(3.5)
n−1∑
i=1

g(R(φei, φY )φZ,φei) = S(φY, φZ) + g(φY, φZ),

(3.6)
n−1∑
i=1

S(φei, φei) = τ − (n− 1)α2,

(3.7)

n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ),

(3.8)

n−1∑
i=1

g(φei, φei) = n− 1,

and

(3.9)
n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ).

So by virtue of (3.5)-(3.9) the equation (3.4) can be written as

(3.10) S(φY, φZ) = [
τ

n− 1
− (n− 1)α2 − (n− 2)]g(φY, φZ).

Then by making use of (2.3) and (2.14), the equation (3.10) takes the form

S(Y,Z) = [
τ

n− 1
− (n− 1)α2 − (n− 2)]g(Y, Z)

+ [
τ

n− 1
− (n− 1)α2 − 2(n− 2)]η(Y )η(Z),
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which implies that Mn is an η−Einstein manifold. This completes the proof of the
theorem. �

Definition 3.3. A differentiable manifold (Mn, g), n > 3, satisfying the condition

φ2K(φX,φY )φZ = 0

is called φ−conharmonically flat.

Theorem 3.4. Let Mn be an n−dimensional, (n > 3), φ−conharmonically flat
Lorentzian α−Sasakian manifold. Then Mn is an η−Einstein manifold.

Proof. Assume that (Mn, g), n > 3, is a φ−conharmonically flat Lorentzian
α−Sasakian manifold. It can be easily seen that φ2K(φX,φY )φZ = 0 holds if
and only if

(3.11) g(K(φX,φY )φZ,φW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). Using (1.3) φ−conharmonically flat means

g(R(φX,φY )φZ,φW )

=
1

n− 2
[g(φY, φZ)S(φX,φW )− g(φX,φZ)S(φY, φW )

+ g(φX,φW )S(φY, φZ)− g(φY, φW )S(φX,φZ)].

(3.12)

Similar the proof of Theorem 3.2, we can suppose that {e1, ..., en−1, ξ} is a local
orthonormal basis of vector fields in Mn. By using the fact that {φe1, ..., φen−1, ξ}
is also a local orthonormal basis, if we put X = W = ei in (3.12) and sum up with
respect to i, then

n−1∑
i=1

g(R(φei, φY )φZ,φei)

=
1

n− 2

n−1∑
i=1

[g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)

+ g(φei, φei)S(φY, φZ)− g(φei, φY )S(φei, φZ)].

(3.13)

So by use of the (3.5)-(3.8) the equation (3.13) turns into

(3.14) S(φY, φZ) = [τ − (n− 1)α2 − (n− 2)]g(φY, φZ).

Applying (2.3) and (2.14) into (3.14), we get

S(Y, Z) = [τ − (n− 1)α2 − (n− 2)]g(Y, Z)

+ [τ − 2(n− 1)α2 − (n− 2)]η(Y )η(Z),

which gives us Mn is an η−Einstein manifold. This completes the proof of the
theorem. �
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Definition 3.5. A differentiable manifold (Mn, g), n > 3, satisfying the condition

φ2P (φX,φY )φZ = 0

is called φ−projectively flat.

Theorem 3.6. Let Mn be an n−dimensional, (n > 3), φ−projectively flat Lorentzian
α−Sasakian manifold. Then Mn is an η−Einstein manifold.

Proof. Assume that (Mn, g), n > 3, is a φ−projectively flat Lorentzian α−Sasakian
manifold. It can be easily seen that φ2P (φX,φY )φZ = 0 holds if and only if

(3.15) g(P (φX,φY )φZ,φW ) = 0,

for any X,Y, Z,W ∈ χ(Mn). Using (1.4) φ−projectively flat means

g(R(φX,φY )φZ,φW )

=
1

n− 1
[g(φY, φZ)S(φX,φW )− g(φX,φZ)S(φY, φW )].

(3.16)

Similar the proofs of Theorem 3.2 and Theorem 3.4, we can suppose that {e1, ..., en−1, ξ}
is a local orthonormal basis of vector fields inMn. By using the fact that {φe1, ..., φen−1, ξ}
is also a local orthonormal basis, if we put X = W = ei in (3.16) and sum up with
respect to i, then

n−1∑
i=1

g(R(φei, φY )φZ,φei)

=
1

n− 1

n−1∑
i=1

[g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)].

(3.17)

By use of the (3.5)-(3.8) the equation (3.17) turns into

(3.18) S(φY, φZ) = (
τ − (n− 1)α2 − (n− 1)

n
)g(φY, φZ).

Hence by virtue of (2.3) and (2.14),we obtain

S(Y, Z) = (
τ − (n− 1)α2 − (n− 1)

n
)g(Y, Z)

+ [
τ − (n− 1)α2 − (n− 1)

n
− (n− 1)α2]η(Y )η(Z),

which gives us Mn is an η−Einstein manifold. This completes the proof of the
theorem. �

Definition 3.7. A differentiable manifold (Mn, g), n > 3, satisfying the condition

φ2C̃(φX,φY )φZ = 0
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is called φ−concircularly flat.

Theorem 3.8. Let Mn be an n−dimensional, (n > 3), φ−concircularly flat
Lorentzian α−Sasakian manifold. Then Mn is an η−Einstein manifold.

Proof. Assume that (Mn, g), n > 3, is a φ−concircularly flat Lorentzian α−Sasakian
manifold. It can be easily seen that φ2C̃(φX,φY )φZ = 0 holds if and only if

(3.19) g(C̃(φX,φY )φZ,φW = 0,

for any X,Y, Z,W ∈ χ(Mn). Using (1.5) φ−concircularly flat means

g(R(φX,φY )φZ,φW )

=
τ

n(n− 1)
[g(φX,φW )g(φY, φZ)− g(φY, φW )g(φX,φZ)].

(3.20)

Similar the proof of above Theorems, we can suppose that {e1, ..., en−1, ξ} is a local
orthonormal basis of vector fields in Mn. By using the fact that {φe1, ..., φen−1, ξ}
is also a local orthonormal basis, if we put X = W = ei in (3.20) and sum up with
respect to i, then

n−1∑
i=1

g(R(φei, φY )φZ,φei)

=
τ

n(n− 1)

n−1∑
i=1

[g(φei, φei)g(φY, φZ)− g(φY, φei)g(φei, φZ)].

(3.21)

So by use of the (3.5)-(3.8) the equation (3.21) turns into

(3.22) S(φY, φZ) = (
(τ − n)(n− 1)

τ + n(n− 1)
)g(φY, φZ).

Applying (2.3) and (2.14) into (3.22), we get

S(Y, Z) = (
(τ − n)(n− 1)

τ + n(n− 1)
)g(Y, Z) + (

(τ − n)(n− 1)

τ + n(n− 1)
− (n− 1)α2)η(Y )η(Z),

which gives us Mn is an η−Einstein manifold. This completes the proof of the
theorem. �
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