A Class of Lorentzian α -Sasakian Manifolds

Ahmet Yildiz* and Mine Turan

Art and Science Faculty, Department of Mathematics, Dumlupinar University, Kütahya, Turkey

e-mail: ahmetyildiz@dumlupinar.edu.tr and mineturan@dumlupinar.edu.tr

Cengizhan Murathan

Art and Science Faculty, Department of Mathematics, Uludag University, 16059 Bursa, Turkey

e-mail: cengiz@uludag.edu.tr

ABSTRACT. In this study we consider φ -conformally flat, φ -conharmonically flat, φ -projectively flat and φ -concircularly flat Lorentzian α -Sasakian manifolds. In all cases, we get the manifold will be an η -Einstein manifold.

1. Introduction

Let (M^n, g) , $n = \dim M > 3$, be connected semi Riemannian manifold of class C^{∞} and ∇ be its Levi-Civita connection. The Riemannian-Christoffel curvature tensor R, the Weyl conformal curvature tensor C (see [19]), the conharmonic curvature tensor K (see [9]), the projective curvature tensor P (see [19]) and the concircular curvature tensor \tilde{C} (see [19]) of (M^n, g) are defined by

$$(1.1) R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

(1.2)
$$C(X,Y)Z = R(X,Y)Z$$

 $+ \frac{1}{n-2} \Big[S(X,Z)Y - S(Y,Z)X + g(X,Z)QY - g(Y,Z)QX \Big]$
 $- \frac{\tau}{(n-1)(n-2)} [g(X,Z)Y - g(Y,Z)X],$

(1.3)
$$K(X,Y)Z = R(X,Y)Z$$

 $-\frac{1}{n-2} \Big[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY \Big],$

Received July 23, 2007; accepted January 9, 2009.

2000 Mathematics Subject Classification: 53D10, 53C25, 53C15.

Key words and phrases: The Weyl conformal curvature tensor, the conharmoic curvature tensor, the projective curvature tensor, the concircular curvature tensor, Trans-Sasakian manifolds, Lorentzian α -Sasakian manifolds.

^{*} Corresponding author.

(1.4)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[g(Y,Z)QX - g(X,Z)QY],$$

$$\tilde{C}(X,Y)Z = R(X,Y)Z - \frac{\tau}{n(n-1)}[g(Y,Z)X - g(X,Z)Y].$$

respectively, where Q is the Ricci operator defined by S(X,Y) = g(QX,Y), S is the Ricci tensor, $\tau = \text{tr}(S)$ is the scalar curvature and $X,Y,Z \in \chi(M)$, $\chi(M)$ is being Lie algebra of vector fields of M.

In [17], S. Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of plane sections containing ξ is a constant, say c. He showed that they can be divided into three classes:

- (1) homogeneous normal contact Riemannian manifolds with c > 0,
- (2) global Riemannian products of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature if c = 0,
- (3) a warped product space $\mathbb{R} \times_f \mathbb{C}$ if c < 0. It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure. Kenmotsu [11] characterized the differential geometric properties of the manifolds of class (3); the structure so obtained is now known as Kenmotsu structure. In general, these structures are not Sasakian [14].

In the Gray-Hervella classification of almost Hermitian manifolds [8], there appears a class, W_4 , of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [10]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [13] if the product manifold $M \times \mathbb{R}$ belongs to the class W_4 . The class $C_6 \oplus C_5$ ([13],[14]) coincides with the class of the trans-Sasakian structures of type (α, β) . In fact, in [13], local nature of the two subclasses, namely, C_5 and C_6 structures, of trans-Sasakian structures are characterized completely.

Also, in [15], Özgür and De studied quasi-conformally flat and quasi-conformally semisymmetric Kenmotsu manifolds. Then, in [20], Yıldız and Murathan studied Lorentzian α -Sasakian manifolds.

We note that trans-Sasakian structures of type (0,0), $(0,\beta)$ and $(\alpha,0)$ are cosymplectic [2], $\beta-Kenmotsu$ [11] and $\alpha-Sasakian$ [11] respectively. In [18] it is proved that trans-Sasakian structures are generalized quasi-Sasakian. Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (φ, ξ, η, g) on M is called a trans-Sasakian structure [13] if $(M \times \mathbb{R}, J, G)$ belongs to the class $W_4[8]$, where J is the almost complex structure on $M \times \mathbb{R}$ defined by

$$J(X, fd/dt) = (\varphi X - f\xi, \eta(X)d/dt),$$

for all vector fields X on M and smooth functions f on $M \times \mathbb{R}$, and G is the product metric on $M \times \mathbb{R}$. This may be expressed by the condition [3]

$$(1.6) \qquad (\nabla_X \varphi) Y = \alpha(q(X, Y)\xi - \eta(Y)X) + \beta(q(\varphi X, Y)\xi - \eta(Y)\varphi X),$$

for some smooth functions α and β on M, and we say that the trans-Sasakian structure is of type (α, β) .

From (1.6) it follows that

(1.7)
$$\nabla_X \xi = -\alpha \varphi X + \beta (X - \eta(X)\xi),$$

(1.8)
$$(\nabla_X \eta) Y = -\alpha g(\varphi X, Y) + \beta g(\varphi X, \varphi Y).$$

Trans-Sasakian manifolds have been studied by De and Tripathi [7] and they obtained the following results:

(1.9)
$$R(X,Y)\xi = (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y) + 2\alpha\beta(\eta(Y)\varphi X - \eta(X)\varphi Y) + (Y\alpha)\varphi X - (X\alpha)\varphi Y + (Y\beta)\varphi^2 X - (X\beta)\varphi^2 Y,$$

(1.10)
$$R(\xi, Y)X = (\alpha^2 - \beta^2)(g(X, Y)\xi - \eta(X)Y) + 2\alpha\beta(g(\varphi X, Y)\xi - \eta(X)\varphi Y) + (X\alpha)\varphi Y + g(\varphi X, Y)(\operatorname{grad}\alpha) + (X\beta)(Y - \eta(Y)\xi) - g(\varphi X, \varphi Y)(\operatorname{grad}\beta),$$

(1.11)
$$R(\xi, X)\xi = (\alpha^2 - \beta^2 - \xi\beta)(\eta(X)\xi - X),$$

$$(1.12) 2\alpha\beta + \xi\alpha = 0,$$

(1.13)
$$S(X,\xi) = ((n-1)(\alpha^2 - \beta^2) - \xi \beta)\eta(X) - (n-2)X\beta - (\varphi X)\alpha,$$

(1.14)
$$Q\xi = ((n-1)(\alpha^2 - \beta^2) - \xi\beta)\xi - (n-2)\operatorname{grad}\beta + \varphi(\operatorname{grad}\alpha).$$

Definition 1.1. A trans-Sasakian structure of type (α, β) is α -Sasakian if $\beta = 0$ and α nonzero constant [10].

If $\alpha = 1$, then α -Sasakian manifold is a Sasakian manifold.

2. Lorentzian α -Sasakian manifolds

A differentiable manifold of dimension n is called Lorentzian α -Sasakian manifold if it admits a (1,1)-tensor field φ , a contravariant vector field ξ , a covariant vector field η and Lorentzian metric g which satisfy ([2], [5], [6], [7], [8], [12])

(2.3)
$$g(\varphi X, \varphi Y) = g(X, Y) + \eta(X)\eta(Y),$$

(2.4)
$$g(X,\xi) = \eta(X),$$

$$\varphi \xi = 0, \quad \eta(\varphi X) = 0,$$

for all $X, Y \in TM$.

From (1.7) and (1.8), a Lorentzian α -Sasakian manifold M is satisfying

$$\nabla_X \xi = -\alpha \varphi X,$$

$$(2.6) (\nabla_X \eta) Y = -\alpha g(\varphi X, Y),$$

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

A Lorentzian α –Sasakian manifold M is said to be η –Einstein if its Ricci tensor S is of the form

(2.7)
$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

for any vector fields X, Y, where a, b are functions on M.

Further, from equations (1.9)-(1.14) on a Lorentzian $\alpha-$ Sasakian manifold M the following relations hold:

(2.8)
$$R(\xi, X)Y = \alpha^{2}(g(X, Y)\xi + \eta(Y)X),$$

(2.9)
$$R(X,Y)\xi = \alpha^2(\eta(Y)X + \eta(X)Y),$$

(2.10)
$$R(\xi, X)\xi = \alpha^{2}(\eta(X)\xi + X),$$

(2.11)
$$S(X,\xi) = (n-1)\alpha^2 \eta(X),$$

$$(2.12) Q\xi = (n-1)\alpha^2 \xi,$$

(2.13)
$$S(\xi, \xi) = -(n-1)\alpha^2,$$

$$(2.14) S(\varphi X, \varphi Y) = S(X, Y) + (n-1)\alpha^2 \eta(X)\eta(Y).$$

3. Main results

In this section we consider φ -conformally flat, φ -conharmonically flat, φ -projectively flat and φ -concircularly flat Lorentzian α -Sasakian manifolds.

Let C be the Weyl conformal curvature tensor of M^n . Since at each point $p \in M^n$ the tangent space $T_p(M^n)$ can be decomposed into direct sum $T_p(M^n) = \varphi(T_p(M^n)) \oplus L(\xi_p)$, where $L(\xi_p)$ is a 1-dimensional linear subspace of $T_p(M^n)$ generated by ξ_p , we have map:

$$C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \to \varphi(T_p(M^n)) \oplus L(\xi_p).$$

It may natural to consider the following particular cases:

- (1) $C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \to L(\xi_p)$, that is, the projection of the image of C in $\varphi(T_p(M^n))$ is zero.
- (2) $C: T_p(M^n) \times T_p(M^n) \times T_p(M^n) \to \varphi(T_p(M^n))$, that is, the projection of the image of C in $L(\xi_p)$ is zero.
- (3) $C: \varphi(T_p(M^n)) \times \varphi(T_p(M^n)) \times \varphi(T_p(M^n)) \to L(\xi_p)$, that is, when C is restricted to $T_p(M^n) \times \varphi(T_p(M^n)) \times \varphi(T_p(M^n))$, the projection of the image of C in $\varphi(T_p(M^n))$ is zero. This condition is equivalent to

(3.1)
$$\varphi^2 C(\varphi X, \varphi Y) \varphi Z = 0,$$

(see [4]).

Definition 3.1. A differentiable manifold (M^n, g) , n > 3, satisfying the condition (3.1) is called φ -conformally flat.

The cases (1) and (2) were considered in [21] and [22], respectively. The case (3) was considered in [6] for the case M is a K-contact manifold and in [16] for the case M is a Lorentzian para-Sasakian manifold.

Furthermore in [1], Arslan, Murathan and Ozgür studied (k, μ) —contact metric manifolds satisfying (3.1). Now our aim is to find the characterization of Lorentzian α —Sasakian manifolds satisfying the condition (3.1).

Theorem 3.2. Let M^n be an n-dimensional, (n > 3), φ -conformally flat Lorentzian α -Sasakian manifold. Then M^n is an η -Einstein manifold.

Proof. Suppose that (M^n, g) , n > 3, is a φ -conformally flat Lorentzian α -Sasakian manifold. It is easy to see that $\varphi^2 C(\varphi X, \varphi Y) \varphi Z = 0$ holds if and only if

$$(3.2) g(C(\varphi X, \varphi Y)\varphi Z, \varphi W) = 0,$$

for any $X, Y, Z, W \in \chi(M^n)$. So by the use of (1.2) φ -conformally flat means

$$\begin{split} (3.3) \qquad & g(R(\varphi X, \varphi Y)\varphi Z, \varphi W) \\ & = \frac{1}{n-2}[g(\varphi Y, \varphi Z)S(\varphi X, \varphi W) - g(\varphi X, \varphi Z)S(\varphi Y, \varphi W) \\ & + g(\varphi X, \varphi W)S(\varphi Y, \varphi Z) - g(\varphi Y, \varphi W)S(\varphi X, \varphi Z)] \\ & - \frac{\tau}{(n-1)(n-2)}[g(\varphi Y, \varphi Z)g(\varphi X, \varphi W) - g(\varphi X, \varphi Z)g(\varphi Y, \varphi W)]. \end{split}$$

Let $\{e_1, ..., e_{n-1}, \xi\}$ be a local orthonormal basis of vector fields in M^n . Using that $\{\varphi e_1, ..., \varphi e_{n-1}, \xi\}$ is also a local orthonormal basis, if we put $X = W = e_i$ in (3.3) and sum up with respect to i, then

$$(3.4) \qquad \sum_{i=1}^{n-1} g(R(\varphi e_i, \varphi Y)\varphi Z, \varphi e_i)$$

$$= \frac{1}{n-2} \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)S(\varphi Y, \varphi e_i)$$

$$+ g(\varphi e_i, \varphi e_i)S(\varphi Y, \varphi Z) - g(\varphi e_i, \varphi Y)S(\varphi e_i, \varphi Z)]$$

$$- \frac{\tau}{(n-1)(n-2)} \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)g(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)g(\varphi Y, \varphi e_i)].$$

It can be easily verify that

(3.5)
$$\sum_{i=1}^{n-1} g(R(\varphi e_i, \varphi Y)\varphi Z, \varphi e_i) = S(\varphi Y, \varphi Z) + g(\varphi Y, \varphi Z),$$

(3.6)
$$\sum_{i=1}^{n-1} S(\varphi e_i, \varphi e_i) = \tau - (n-1)\alpha^2,$$

(3.7)
$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi Z) S(\varphi Y, \varphi e_i) = S(\varphi Y, \varphi Z),$$

(3.8)
$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi e_i) = n - 1,$$

and

(3.9)
$$\sum_{i=1}^{n-1} g(\varphi e_i, \varphi Z) g(\varphi Y, \varphi e_i) = g(\varphi Y, \varphi Z).$$

So by virtue of (3.5)-(3.9) the equation (3.4) can be written as

(3.10)
$$S(\varphi Y, \varphi Z) = \left[\frac{\tau}{n-1} - (n-1)\alpha^2 - (n-2)\right]g(\varphi Y, \varphi Z).$$

Then by making use of (2.3) and (2.14), the equation (3.10) takes the form

$$\begin{split} S(Y,Z) &= [\frac{\tau}{n-1} - (n-1)\alpha^2 - (n-2)]g(Y,Z) \\ &+ [\frac{\tau}{n-1} - (n-1)\alpha^2 - 2(n-2)]\eta(Y)\eta(Z), \end{split}$$

which implies that M^n is an η -Einstein manifold. This completes the proof of the theorem.

Definition 3.3. A differentiable manifold (M^n, g) , n > 3, satisfying the condition

$$\varphi^2 K(\varphi X, \varphi Y) \varphi Z = 0$$

is called φ -conharmonically flat.

Theorem 3.4. Let M^n be an n-dimensional, (n > 3), φ -conharmonically flat Lorentzian α -Sasakian manifold. Then M^n is an η -Einstein manifold.

Proof. Assume that (M^n,g) , n>3, is a φ -conharmonically flat Lorentzian α -Sasakian manifold. It can be easily seen that $\varphi^2K(\varphi X,\varphi Y)\varphi Z=0$ holds if and only if

(3.11)
$$g(K(\varphi X, \varphi Y)\varphi Z, \varphi W) = 0,$$

for any $X, Y, Z, W \in \chi(M^n)$. Using (1.3) φ -conharmonically flat means

$$(3.12) \qquad g(R(\varphi X, \varphi Y)\varphi Z, \varphi W)$$

$$= \frac{1}{n-2} [g(\varphi Y, \varphi Z)S(\varphi X, \varphi W) - g(\varphi X, \varphi Z)S(\varphi Y, \varphi W) + g(\varphi X, \varphi W)S(\varphi Y, \varphi Z) - g(\varphi Y, \varphi W)S(\varphi X, \varphi Z)].$$

Similar the proof of Theorem 3.2, we can suppose that $\{e_1,...,e_{n-1},\xi\}$ is a local orthonormal basis of vector fields in M^n . By using the fact that $\{\varphi e_1,...,\varphi e_{n-1},\xi\}$ is also a local orthonormal basis, if we put $X=W=e_i$ in (3.12) and sum up with respect to i, then

$$(3.13) \qquad \sum_{i=1}^{n-1} g(R(\varphi e_i, \varphi Y)\varphi Z, \varphi e_i)$$

$$= \frac{1}{n-2} \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)S(\varphi Y, \varphi e_i) + g(\varphi e_i, \varphi e_i)S(\varphi Y, \varphi Z) - g(\varphi e_i, \varphi Y)S(\varphi e_i, \varphi Z)].$$

So by use of the (3.5)-(3.8) the equation (3.13) turns into

(3.14)
$$S(\varphi Y, \varphi Z) = [\tau - (n-1)\alpha^2 - (n-2)]q(\varphi Y, \varphi Z).$$

Applying (2.3) and (2.14) into (3.14), we get

$$S(Y,Z) = [\tau - (n-1)\alpha^2 - (n-2)]g(Y,Z) + [\tau - 2(n-1)\alpha^2 - (n-2)]\eta(Y)\eta(Z),$$

which gives us M^n is an $\eta-$ Einstein manifold. This completes the proof of the theorem. \Box

Definition 3.5. A differentiable manifold (M^n, g) , n > 3, satisfying the condition

$$\varphi^2 P(\varphi X, \varphi Y) \varphi Z = 0$$

is called φ -projectively flat.

Theorem 3.6. Let M^n be an n-dimensional, (n > 3), φ -projectively flat Lorentzian α -Sasakian manifold. Then M^n is an η -Einstein manifold.

Proof. Assume that (M^n, g) , n > 3, is a φ -projectively flat Lorentzian α -Sasakian manifold. It can be easily seen that $\varphi^2 P(\varphi X, \varphi Y) \varphi Z = 0$ holds if and only if

(3.15)
$$g(P(\varphi X, \varphi Y)\varphi Z, \varphi W) = 0,$$

for any $X, Y, Z, W \in \chi(M^n)$. Using (1.4) φ -projectively flat means

$$(3.16) g(R(\varphi X, \varphi Y)\varphi Z, \varphi W)$$

$$= \frac{1}{n-1} [g(\varphi Y, \varphi Z)S(\varphi X, \varphi W) - g(\varphi X, \varphi Z)S(\varphi Y, \varphi W)].$$

Similar the proofs of Theorem 3.2 and Theorem 3.4, we can suppose that $\{e_1, ..., e_{n-1}, \xi\}$ is a local orthonormal basis of vector fields in M^n . By using the fact that $\{\varphi e_1, ..., \varphi e_{n-1}, \xi\}$ is also a local orthonormal basis, if we put $X = W = e_i$ in (3.16) and sum up with respect to i, then

(3.17)
$$\sum_{i=1}^{n-1} g(R(\varphi e_i, \varphi Y)\varphi Z, \varphi e_i)$$

$$= \frac{1}{n-1} \sum_{i=1}^{n-1} [g(\varphi Y, \varphi Z)S(\varphi e_i, \varphi e_i) - g(\varphi e_i, \varphi Z)S(\varphi Y, \varphi e_i)].$$

By use of the (3.5)-(3.8) the equation (3.17) turns into

(3.18)
$$S(\varphi Y, \varphi Z) = \left(\frac{\tau - (n-1)\alpha^2 - (n-1)}{n}\right)g(\varphi Y, \varphi Z).$$

Hence by virtue of (2.3) and (2.14), we obtain

$$\begin{split} S(Y,Z) &= (\frac{\tau - (n-1)\alpha^2 - (n-1)}{n})g(Y,Z) \\ &+ [\frac{\tau - (n-1)\alpha^2 - (n-1)}{n} - (n-1)\alpha^2]\eta(Y)\eta(Z), \end{split}$$

which gives us M^n is an η -Einstein manifold. This completes the proof of the theorem.

Definition 3.7. A differentiable manifold (M^n, q) , n > 3, satisfying the condition

$$\varphi^2 \tilde{C}(\varphi X, \varphi Y) \varphi Z = 0$$

is called φ -concircularly flat.

Theorem 3.8. Let M^n be an n-dimensional, (n > 3), φ -concircularly flat Lorentzian α -Sasakian manifold. Then M^n is an η -Einstein manifold.

Proof. Assume that (M^n, g) , n > 3, is a φ -concircularly flat Lorentzian α -Sasakian manifold. It can be easily seen that $\varphi^2 \tilde{C}(\varphi X, \varphi Y) \varphi Z = 0$ holds if and only if

(3.19)
$$g(\tilde{C}(\varphi X, \varphi Y)\varphi Z, \varphi W = 0,$$

for any $X, Y, Z, W \in \chi(M^n)$. Using (1.5) φ -concircularly flat means

(3.20)
$$g(R(\varphi X, \varphi Y)\varphi Z, \varphi W) = \frac{\tau}{n(n-1)} [g(\varphi X, \varphi W)g(\varphi Y, \varphi Z) - g(\varphi Y, \varphi W)g(\varphi X, \varphi Z)].$$

Similar the proof of above Theorems, we can suppose that $\{e_1, ..., e_{n-1}, \xi\}$ is a local orthonormal basis of vector fields in M^n . By using the fact that $\{\varphi e_1, ..., \varphi e_{n-1}, \xi\}$ is also a local orthonormal basis, if we put $X = W = e_i$ in (3.20) and sum up with respect to i, then

(3.21)
$$\sum_{i=1}^{n-1} g(R(\varphi e_i, \varphi Y)\varphi Z, \varphi e_i)$$

$$= \frac{\tau}{n(n-1)} \sum_{i=1}^{n-1} [g(\varphi e_i, \varphi e_i)g(\varphi Y, \varphi Z) - g(\varphi Y, \varphi e_i)g(\varphi e_i, \varphi Z)].$$

So by use of the (3.5)-(3.8) the equation (3.21) turns into

(3.22)
$$S(\varphi Y, \varphi Z) = (\frac{(\tau - n)(n-1)}{\tau + n(n-1)})g(\varphi Y, \varphi Z).$$

Applying (2.3) and (2.14) into (3.22), we get

$$S(Y,Z) = (\frac{(\tau - n)(n-1)}{\tau + n(n-1)})g(Y,Z) + (\frac{(\tau - n)(n-1)}{\tau + n(n-1)} - (n-1)\alpha^2)\eta(Y)\eta(Z),$$

which gives us M^n is an η -Einstein manifold. This completes the proof of the theorem.

References

Arslan K., Murathan C. and Özgür C., On φ- Conformally flat contact metric manifolds, Balkan J. Geom. Appl. (BJGA), 5(2)(2000), 1-7.

- [2] Blair D. E., Contact manifolds in Riemannian geometry, Lectures Notes in Mathematics, Springer-Verlag, Berlin, 509(1976), 146.
- Blair D. E. and Oubina J. A., Conformal and related changes of metric on the product of two almost contact metric manifolds, Publications Matematiques, 34(1990), 199-207.
- [4] Cabrerizo J.L., Fernandez L.M., Fernandez M. and Zhen G., The structure of a class of K-contact manifolds, Acta Math., Hungar, 82(4)(1999), 331-340.
- [5] Chaki M. C., and Gupta B., On Conformally Symmetric Spaces, Indian J. Math., 5(1963), 113-123.
- [6] Chinea D. and Gonzales C., Curvature relations in trans-Sasakian manifolds, Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol. II(Portuguese) (Braga, 1987), 564-571, Univ. Minho, Braga, 1987.
- [7] De U. C. and Tripathi M. M., Ricci Tensor in 3-dimensional Trans-Sasakian Manifolds, Kyungpook Math. J., 43(2003), 247-255.
- [8] Gray A. and Hervella L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123(4)(1980), 35-58.
- [9] Ishii Y., On Conharmonic transformations, Tensor N.S. 7(1957), 73-80.
- [10] Janssens D. and Vanhecke L., Almost contact structures and curvature tensors, Kodai Math. J., 4(1981), 1-27.
- [11] Kenmotsu K., A class of almost contact Riemannian manifolds, Tohoku Math. J., 24(1972), 93-103.
- [12] Kim J. S., Prasad R. and Tripathi M. M., On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc., 39(6)(2002), 953-961.
- [13] Marrero J. C., The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., **162(4)**(1992), 77-86. J.
- [14] Marrero J. C. and Chinea D., On trans-Sasakian manifolds, Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol. I-III (Spanish) (Puerto de la Cruz, 1989), 655-659, Univ. La Laguna, La Laguna, 1990.
- [15] Özgür C. and De U. C., On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, 17/2, (2006), 221-228.
- [16] Özgür C., φ -conformally flat Lorentzian para-Sasakian manifolds, Radovi Matematicki, Vol. 12, (2003), 99-106.
- [17] Tanno S., The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J., 21(1969), 21-38.
- [18] Tripathi M. M., Trans-Sasakian manifolds are generalized quasi-Sasakian, Nepali Math. Sci. Rep., 18(1-2)(1999-2000), 11-14.
- [19] Yano K. and Kon M., Structures on Manifolds, Series in Pure Math. Vol 3. World Sci., (1984).
- [20] Yıldız A. and Murathan C., On Lorentzian α-Sasakian manifolds, Kyungpook Math. J., 45(2005), 95-103.
- [21] Zhen G., On conformal symmetric K-contact manifolds, Chinese Quart. J. of Math., 7 (1992), 5-10.

[22] Zhen G., Cabrerizo J.L., Fernandez L.M. and Fernandez M., On ξ -conformally flat contact metric manifolds, Indian J. Pure Appl. Math., 28(1997), 725-734.