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ABSTRACT. In this study we consider ¢—conformally flat, ¢—conharmonically flat, ¢ —projectively
flat and ¢—concircularly flat Lorentzian a—Sasakian manifolds. In all cases, we get the
manifold will be an n—FEinstein manifold.

1. Introduction

Let (M™, g), n =dim M > 3, be connected semi Riemannian manifold of class
C° and V be its Levi-Civita connection. The Riemannian-Christoffel curvature
tensor R, the Weyl conformal curvature tensor C' (see [19]), the conharmonic cur-
vature tensor K (see [9]), the projective curvature tensor P (see [19]) and the
concircular curvature tensor C (see [19]) of (M", g) are defined by

(1.1) R(X,Y)Z =VxVyZ -VyVxZ - Vxy|Z,

(12) C(X,Y)Z=R(X,Y)Z

+ ﬁ S(X,2)Y - S(Y,2)X + g(X, 2)QY — g(Y, 2)QX
T oDy WX 2Y —e(Y, 2)X],

(1.3) K(X,Y)Z=R(X,Y)Z
1
n—2

S(Y7 Z)X—S(X,Z)Y—I—Q(Y, Z)QX_Q(Xﬂ Z)QY )
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(1.4) P(X,Y)Z=R(X,Y)Z - ﬁ[g(Y7 Z2)QX — g(X, Z2)QY],

~ T

(1.5) C(X,Y)Z=R(X,Y)Z — W[Q(Y, )X —g9(X,2)Y].
respectively, where @ is the Ricci operator defined by S(X,Y) = ¢g(QX,Y), S is
the Ricci tensor, 7 = tr(S) is the scalar curvature and X,Y,Z € x(M), x(M) is
being Lie algebra of vector fields of M.

In [17], S. Tanno classified connected almost contact metric manifolds whose
automorphism groups possess the maximum dimension. For such a manifold, the
sectional curvature of plane sections containing £ is a constant, say c¢. He showed
that they can be divided into three classes:

(1) homogeneous normal contact Riemannian manifolds with ¢ > 0,

(2) global Riemannian products of a line or a circle with a Kaehler manifold of
constant holomorphic sectional curvature if ¢ = 0,

(3) a warped product space R x; C if ¢ < 0. It is known that the manifolds
of class (1) are characterized by admitting a Sasakian structure. Kenmotsu [11]
characterized the differential geometric properties of the manifolds of class (3);
the structure so obtained is now known as Kenmotsu structure. In general, these
structures are not Sasakian [14].

In the Gray-Hervella classification of almost Hermitian manifolds [8], there ap-
pears a class, Wy, of Hermitian manifolds which are closely related to locally confor-
mal Kaehler manifolds [10]. An almost contact metric structure on a manifold M is
called a trans-Sasakian structure [13] if the product manifold M x R belongs to the
class Wy. The class Cs @ C5 ([13],[14]) coincides with the class of the trans-Sasakian
structures of type («, 8). In fact, in [13], local nature of the two subclasses, namely,
C5 and Cjy structures, of trans-Sasakian structures are characterized completely.

Also, in [15], Ozgiir and De studied quasi-conformally flat and quasi-conformally
semisymmetric Kenmotsu manifolds. Then, in [20], Yildiz and Murathan studied
Lorentzian a—Sasakian manifolds.

We note that trans-Sasakian structures of type (0,0), (0, 8) and («, 0) are cosym-
plectic [2], —Kenmotsu [11] and a—Sasakian [11] respectively. In [18] it is proved
that trans-Sasakian structures are generalized quasi-Sasakian. Thus, trans-Sasakian
structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (p,&,n,g) on M is called a trans-Sasakian
structure [13] if (M x R, J, G) belongs to the class W,[8], where J is the almost
complex structure on M x R defined by

for all vector fields X on M and smooth functions f on M x R | and G is the
product metric on M x R . This may be expressed by the condition [3]

(1.6) (Vxp)Y = a(g(X,Y)§ —n(Y)X) + B(g(¢X,Y)E —n(Y)pX),
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for some smooth functions a and 5 on M, and we say that the trans-Sasakian
structure is of type (o, 8).
From (1.6) it follows that

(L.7) Vx§=—apX + (X —n(X)E),

(1.8) (Vxn)Y = —ag(pX,Y) + Bg(pX, pY).

Trans-Sasakian manifolds have been studied by De and Tripathi [7] and they ob-
tained the following results:

(199  RX,YV)¢= (=B (V)X —n(X)Y) + 20B(n(Y)pX — n(X)pY)
+ (Ya)pX — (Xa)pY + (YB)p*X — (XB)¢?Y,

(1.10)  R(&,Y)X = (o = B%)(g(X,Y)E = n(X)Y) + 2a8(9(pX, Y )E — n(X)pY)

+ (Xa)pY + g(¢X,Y)(grada)
+ (XB)(Y —n(Y)§) — g(¢X, ¢Y)(gradp),
(1.11) R(&, X)E = (® = 8% = £8)(n(X)€ — X),
(1.12) 206+ €a = 0,
(1.13) S(X,6) = ((n—1)(a? = 5%) = €B)n(X) — (n — 2)XB — (¢X)a,

(L14) Q€= ((n—1)(a? - B%) — EB)E — (n — 2)gradB + p(grada).

Definition 1.1. A trans-Sasakian structure of type (a, ) is a-Sasakian if 8 =0
and « nonzero constant [10].

If a = 1, then a-Sasakian manifold is a Sasakian manifold.

2. Lorentzian o—Sasakian manifolds

A differentiable manifold of dimension n is called Lorentzian a—Sasakian man-
ifold if it admits a (1,1)—tensor field ¢, a contravariant vector field £, a covariant
vector field n and Lorentzian metric g which satisfy ([2], [5], [6], [7], [8], [12])

(2.1) n€) = -1,

(2.2) P =1+n®¢,
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(2.3) g(PX,9Y) = g(X,Y) +n(X)n(Y),

(2.4) 9(X, &) = n(X),

p€ =0, n(pX)=0,
for all X,Y € TM.
From (1.7) and (1.8), a Lorentzian a—Sasakian manifold M is satisfying

(2.5) Vx€=—apX,

(2.6) (Vxn)Y = —ag(pX,Y),

where V denotes the operator of covariant differentation with respect to the Lorentzian
metric g.

A Lorentzian a—Sasakian manifold M is said to be n—FEinstein if its Ricci tensor
S is of the form

(2.7) S(X,Y) =ag(X,Y) +bn(X)n(Y),

for any vector fields X, Y, where a, b are functions on M.
Further, from equations (1.9)-(1.14) on a Lorentzian a—Sasakian manifold M
the following relations hold:

(2.8) R, X)Y = o®(g(X,Y)E +n(Y)X),
(2.9) R(X,Y)¢ = a*(n(Y)X +n(X)Y),
(2.10) R(&, X)& = a®(n(X)€ + X),
(2.11) S(X,€) = (n—1)a’n(X),
(2.12) Q¢ = (n — 1)’

(2.13) S(6,6) = —(n—1)a?,

(2.14) S(X,9Y) = S(X,Y) + (n —1)a’n(X)n(Y).
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3. Main results

In this section we consider ¢p—conformally flat, p—conharmonically flat, p—projectively
flat and ¢p—concircularly flat Lorentzian a—Sasakian manifolds.

Let C be the Weyl conformal curvature tensor of M"™. Since at each point
p € M™ the tangent space T),(M™) can be decomposed into direct sum T,,(M") =
o(Tp(M™)) & L(&p), where L(€,) is a 1—dimensional linear subspace of T},(M™)
generated by ,, we have map:

C:Ty(M™) x T,(M"™) x Tp,(M™) = o(T,(M")) & L(§p).

It may natural to consider the following particular cases:

(1) C:T,(M"™) x T,(M"™) x T,(M™) — L(&p,), that is, the projection of the
image of C' in ¢(T,(M™)) is zero.

(2) C:Tp(M™) xT(M™) x T,(M™) — @(Tp(M™)), that is, the projection of
the image of C in L(&,) is zero.

()  C:o(T,(M™) x o(Tp(M™)) x o(Tp(M™)) — L(&,), that is, when C is
restricted to T,(M"™) x o(T,(M™)) x o(T,(M™)),the projection of the image of C
in ¢(T,(M™)) is zero. This condition is equivalent to

(3.1) ¢*C(pX, 9Y)pZ =0,

(see [4]).

Definition 3.1. A differentiable manifold (M™, g), n > 3, satisfying the condition
(3.1) is called p—conformally flat.

The cases (1) and (2) were considered in [21] and [22], respectively. The case
(3) was considered in [6] for the case M is a K —contact manifold and in [16] for
the case M is a Lorentzian para-Sasakian manifold.

Furthermore in [1], Arslan, Murathan and Ozgiir studied (k, )—contact metric
manifolds satisfying (3.1). Now our aim is to find the characterization of Lorentzian
a—Sasakian manifolds satisfying the condition (3.1).

Theorem 3.2. Let M™ be an n—dimensional, (n > 3), o— conformally flat Lorentzian
a—>Sasakian manifold. Then M™ is an n— Einstein manifold.

Proof. Suppose that (M™, g), n > 3, is a p—conformally flat Lorentzian a—Sasakian
manifold. It is easy to see that p2C(pX, Y )¢Z = 0 holds if and only if

(3.2) 9(C(p X, pY)pZ, W) = 0,
for any X, Y, Z,W € x(M™). So by the use of (1.2) ¢—conformally flat means
(3:3)  g(R(pX,pY)pZ, W)

= ﬁ[g(@’, ©Z)S(pX,oW) — g(¢X, 0Z)S (Y, oW)
+ 9(0 X, oW)S(9Y, 0 Z) — g(¢Y, W) S(pX, ¢Z))

- m[g(@’, ©Z)g(pX, oW) — g(pX, 0Z)g(pY, pW)].
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Let {e1,...,en—1,&} be a local orthonormal basis of vector fields in M™. Using
that {pe1, ..., pen_1,£} is also a local orthonormal basis, if we put X = W =¢; in
(3.3) and sum up with respect to i, then

n—1
(34) D g(R(pes, oY)pZ, pe;)
=1
n—1
1
= — D _l9(¢Y,92)S(pei, pei) — glpei, 92)S(pY, pei)
=1
+ g(pei, pei) S(pY, 0 Z) — g(wei, Y)S(pe;, pZ)]
n—1
-
- m;[g(@ﬂ pZ)g(pei, pei) — g(pei, pZ)g(pY, pei)].
It can be easily verify that
n—1
(3.5) > 9(R(pes, Y )pZ, gei) = S(9Y,07Z) + g(¢Y,0Z),
1=1
n—1
(3.6) > S(pei,pei) =7 — (n—1)a?,
i=1
n—1
(3.7) > g(eei, 02)S(Y, pe;) = S(pY, 9Z),
1=1
n—1
(3.8) Zg(cpei, we;)=n—1,
=1
and
n—1
(3.9) > glpei, 0Z)g(¢Y, pe:) = g(Y, ¢ Z).
=1

So by virtue of (3.5)-(3.9) the equation (3.4) can be written as

-
n—1

Then by making use of (2.3) and (2.14), the equation (3.10) takes the form

(3.10) S(eY,¢Z) = | = (n=1)a® = (n - 2)]g(¢Y, ¢Z).

T

SV, 2) = [-— = (n=1)a® = (n = 2)]g(V, 2)

T

n —

+1 = (n=1)a® = 2(n = 2)]n(Y)n(Z),

n—1
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which implies that M™ is an n—Einstein manifold. This completes the proof of the
theorem. g

Definition 3.3. A differentiable manifold (M™, g), n > 3, satisfying the condition
P K(pX,¢Y)pZ =0
is called ¢p—conharmonically flat.

Theorem 3.4. Let M™ be an n—dimensional, (n > 3), @—conharmonically flat
Lorentzian a—Sasakian manifold. Then M™ is an n— Finstein manifold.

Proof.  Assume that (M™,g), n > 3, is a p—conharmonically flat Lorentzian
a—Sasakian manifold. It can be easily seen that p?K(¢X,9Y)pZ = 0 holds if
and only if

(3.11) 9K (X, oY )pZ,oW) =0,
for any X, Y, Z,W € x(M™). Using (1.3) p—conharmonically flat means
(3.12) 9(R(pX, oY )pZ, W)

1
= 5 10(0Y,9Z)S(0X, W) — g(pX, pZ)S(pY, W)

+9(eX, oW)S(pY,9Z) — g(¢Y, oW)S(pX, 0 Z)].

Similar the proof of Theorem 3.2, we can suppose that {ej,...,e,—1,£} is a local
orthonormal basis of vector fields in M™. By using the fact that {pey, ..., pe,_1,&}
is also a local orthonormal basis, if we put X = W =e; in (3.12) and sum up with
respect to i, then

n—1

(3.13) > "g(R(gei, oY) Z, pe;)
i=1

n—1
1
= > 99, 92)S(pei, pei) — glpei, 2)S(9Y, pe;)
1=1

+9(pei, pe) S(9Y, 0 Z) — glpei, Y )S(pei, p2)].
So by use of the (3.5)-(3.8) the equation (3.13) turns into

(3.14) S(pY,9Z) = [7 = (n—1)a” — (n.— 2)]g(¢Y, 2).
Applying (2.3) and (2.14) into (3.14), we get
S(Y.Z) = [r = (n—1)o” — (n - 2)|g(Y, Z)
+[r=2(n—1)a” — (n = 2)[n(Y)n(2),

which gives us M™ is an n—Einstein manifold. This completes the proof of the
theorem. 0
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Definition 3.5. A differentiable manifold (M™, g), n > 3, satisfying the condition
P P(pX,9Y)pZ =0
is called p—projectively flat.

Theorem 3.6. Let M™ be an n— dimensional, (n > 3), p—projectively flat Lorentzian
a—=Sasakian manifold. Then M™ is an n— Einstein manifold.

Proof. Assume that (M™,g), n > 3, is a p—projectively flat Lorentzian a—Sasakian
manifold. It can be easily seen that ©?P(pX, pY )¢Z = 0 holds if and only if

(3.15) 9(P(pX, Y )pZ, pW) =0,
for any X,Y,Z, W € x(M™). Using (1.4) p—projectively flat means
(3.16) 9(R(pX, Y )pZ, pW)

= i 11900, 02)S(pX, W) — g(pX, pZ)S(pY, W]

Similar the proofs of Theorem 3.2 and Theorem 3.4, we can suppose that {ey, ..., e,-1,£}

is a local orthonormal basis of vector fields in M™. By using the fact that {ey, ..., pe,_1,&}
is also a local orthonormal basis, if we put X = W = ¢; in (3.16) and sum up with
respect to i, then

n—1
(3.17) > 9(R(eei, oY ) Z, pe;)
=1

n—1
1

= 7 2 L0(eY.02)S(wei, pei) = gl(wei 92)S(9Y, pei)].

By use of the (3.5)-(3.8) the equation (3.17) turns into

T—(n—-1)a%—(n-1)

(3.18) S(eY, 92) = ( - )9(¢Y, 9Z).
Hence by virtue of (2.3) and (2.14),we obtain
R e e
T—(n—1)a?—(n—
gm0 2 D ey 2),

which gives us M™ is an n—Finstein manifold. This completes the proof of the
theorem. ([l

Definition 3.7. A differentiable manifold (M", g), n > 3, satisfying the condition

P ClpX, pY)pZ =0
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is called p—concircularly flat.

Theorem 3.8. Let M"™ be an n—dimensional, (n > 3), p—-concircularly flat
Lorentzian a— Sasakian manifold. Then M™ is an n— Einstein manifold.

Proof. Assume that (M",g),n > 3,isa ¢—concircularly flat Lorentzian a—Sasakian
manifold. It can be easily seen that p?C(pX, Y )¢Z = 0 holds if and only if

(3.19) 9(C(X, oY )pZ, oW =0,
for any X, Y, Z,W € x(M™). Using (1.5) p—concircularly flat means
(3.20) 9(R(p X, Y)pZ, W)

- ﬁ[g(% W) g(@Y, pZ) — (@Y, oW )g(pX,¢Z)].

Similar the proof of above Theorems, we can suppose that {e1,...,e,_1,£} is a local
orthonormal basis of vector fields in M™. By using the fact that {@eq, ..., pe,_1,&}
is also a local orthonormal basis, if we put X = W =¢; in (3.20) and sum up with
respect to i, then

n—1
(3.21) > "g(R(pei, oY )pZ, pe;)
=1

B n(nTUi[g(‘P@i, pei)g(eY, 0 Z) — g(0Y, pei)g(pei, p2Z)].

i=1

So by use of the (3.5)-(3.8) the equation (3.21) turns into

(t—n)(n—1)

.22 Y, oZ)=(~—F—-+= Y, 7).
(3.22) S(eY,¢Z) (T+n(n_1) )9(¢Y, ¢ Z)
Applying (2.3) and (2.14) into (3.22), we get

(r—n)(n—1) (r—n)(n—-1) 2
Y, 7)=(~—F——)9(Y, Z ——— —(n—-1 Yn(Z

S, 2) = (T 30, 2) 4+ (TP — = D (Y )n(2),
which gives us M™ is an n—FEinstein manifold. This completes the proof of the
theorem. g
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