• 제목/요약/키워드: Q.R.A

검색결과 1,729건 처리시간 0.027초

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • 제63권2호
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • AS R[x]-MODULES

  • Park, Sangwon;Kang, Junghee;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.243-252
    • /
    • 2010
  • In this paper we extend the projective properties of representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left R-modules to the projective properties of representations of quiver $Q={\bullet}{\rightarrow}{\bullet}$ as left $R[x]$-modules. We show that if P is a projective left R-module then $0{\rightarrow}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. And we show $0{\rightarrow}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module if and only if $0{\rightarrow}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. Then we show if P is a projective left R-module then $R[x]\longrightarrow^{id}P[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules. We also show that if $L\longrightarrow^{id}L$ is a projective representation of $Q={\bullet}{\rightarrow}{\bullet}$ as R-module, then $L[x]\longrightarrow^{id}L[x]$ is a projective representation of a quiver $Q={\bullet}{\rightarrow}{\bullet}$ as $R[x]$-modules.

TRACE EXPRESSION OF r-TH ROOT OVER FINITE FIELD

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.1019-1030
    • /
    • 2020
  • Efficient computation of r-th root in 𝔽q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer type algorithms for general case. More precisely, for given r-th power c ∈ 𝔽q, we show that there exists α ∈ 𝔽qr such that $$Tr{\left(\begin{array}{cccc}{{\alpha}^{{\frac{({\sum}_{i=0}^{r-1}\;q^i)-r}{r^2}}}\atop{\text{ }}}\end{array}\right)}^r=c,$$ where $Tr({\alpha})={\alpha}+{\alpha}^q+{\alpha}^{q^2}+{\cdots}+{\alpha}^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over 𝔽q.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

A q-ANALOGUE OF QI FORMULA FOR r-DOWLING NUMBERS

  • Cillar, Joy Antonette D.;Corcino, Roberto B.
    • 대한수학회논문집
    • /
    • 제35권1호
    • /
    • pp.21-41
    • /
    • 2020
  • In this paper, we establish an explicit formula for r-Dowling numbers in terms of r-Whitney Lah and r-Whitney numbers of the second kind. This is a generalization of the Qi formula for Bell numbers in terms of Lah and Stirling numbers of the second kind. Moreover, we define the q, r-Dowling numbers, q, r-Whitney Lah numbers and q, r-Whitney numbers of the first kind and obtain several fundamental properties of these numbers such as orthogonality and inverse relations, recurrence relations, and generating functions. Hence, we derive an analogous Qi formula for q, r-Dowling numbers expressed in terms of q, r-Whitney Lah numbers and q, r-Whitney numbers of the second kind.

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

On Quasi-Baer and p.q.-Baer Modules

  • Basser, Muhittin;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.255-263
    • /
    • 2009
  • For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

Bactericidal Antibody Responses to Meningococcal Recombinant Outer Membrane Proteins

  • Ming Zhu;Yunqing Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1419-1424
    • /
    • 2024
  • Secretin PilQ is an antigenically conserved outer membrane protein that is present in most meningococci and PorA is a major protein that elicits bactericidal immune response in humans following natural disease and immunization. In the present study, BALB/c mice were immunized subcutaneously with rPilQ406-770 or rPorA together with Freund's adjuvant (FA). Serum antibody responses to serogroup A and B Neisseria meningitides whole cells or purified proteins and functional activity of antibodies were determined by ELISA and serum bactericidal assay (SBA), respectively. Serum IgG responses were significantly increased in the immunized group with rPilQ406-770 or rPorA together with FA compared to control groups. IgG antibody response of mice immunized with rPilQ406-770 was significantly more than mice immunized with rPorA (OD at 450 nm was 1.6 versus 0.83). The booster injections were effective in increasing the responses of antirPilQ406-770 or anti-rPorA IgG significantly. Antisera produced against rPilQ406-770 or rPorA demonstrated strong surface reactivity to serogroup B N. meningitides in comparison with control groups. Antisera raised against rPorA or rPilQ406-770 and FA demonstrated SBA titers from 1/1024 to 1/2048 against serogroup B. The strongest bactericidal activity was detected in sera from mice immunized with rPilQ406-770 mixed with FA. These results suggest that rPilQ406-770 is a potential vaccine candidate for serogroup B N. meningitidis.

NUMERICAL METHODS FOR SOME NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

  • El-Borai, Mahmoud M.;El-Nadi, Khairia El-Said;Mostafa, Osama L.;Ahmed, Hamdy M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권1호
    • /
    • pp.79-90
    • /
    • 2005
  • In this paper we study the numerical solutions of the stochastic differential equations of the form $$du(x,\;t)=f(x,\;t,\;u)dt\;+\;g(x,\;t,\;u)dW(t)\;+\;\sum\limits_{|q|\leq2m}\;A_q(x,\;t)D^qu(x,\;t)dt$$ where $0\;{\leq}\;t\;{\leq}\;T,\;x\;{\in}\;R^{\nu}$, ($R^{nu}$ is the $\nu$-dimensional Euclidean space). Here $u\;{\in}\;R^n$, W(t) is an n-dimensional Brownian motion, $$f\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^n,\;g\;:\;R^{n+\nu+1}\;{\rightarrow}\;R^{n{\times}n},$$, and $$A_q\;:\;R^{\nu}\;{\times}\;[0,\;T]\;{\rightarrow}\;R^{n{\times}n}$$ where ($A_q,\;|\;q\;|{\leq}\;2m$) is a family of square matrices whose elements are sufficiently smooth functions on $R^{\nu}\;{\times}\;[0,\;T]\;and\;D^q\;=\;D^{q_1}_1_{\ldots}_{\ldots}D^{q_{\nu}}_{\nu},\;D_i\;=\;{\frac{\partial}{\partial_{x_i}}}$.

  • PDF

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • 대한수학회지
    • /
    • 제42권1호
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.