On Quasi-Baer and p.q.-Baer Modules

Muhittin Başer*
Department of Mathematics, Kocatepe University, Afyonkarahisar 03200, Turkey
e-mail : mbaser@aku.edu.tr

Abdullah Harmanci
Department of Mathematics, Hacettepe University, Ankara, Turkey
e-mail : harmanci@hacettepe.edu.tr

Abstract. For an endomorphism α of R, in [1], a module M_{R} is called α-compatible if, for any $m \in M$ and $a \in R, m a=0$ iff $m \alpha(a)=0$, which are a generalization of α-reduced modules. We study on the relationship between the quasi-Baerness and p.q.Baer property of a module M_{R} and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an α-compatible module $M_{R}(1) M_{R}$ is $p . q$--Baer module iff $M[x ; \alpha]_{R[x ; \alpha]}$ is $p . q$--Baer module. (2) for an automorphism α of R, M_{R} is p.q.-Baer module iff $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is p.q.Baer module.

1. Introduction

Throughout this work all rings R are associative with identity and modules are unital right R-modules and $\alpha: R \rightarrow R$ is an endomorphism of the ring R. In [7] Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al. [5] called a ring R right (resp. left) principally quasi-Baer [or simply right (resp. left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left) ideal of R is generated by an idempotent. R is called p.q.-Baer if it is both right and left p.q.-Baer. A ring is called reduced ring if it has no nonzero nilpotent elements and M_{R} is called α-reduced module by Lee-Zhou [9] if, for any $m \in M$ and $a \in R$,
(1) $m a=0$ implies $m R \cap M a=0$,
(2) $m a=0$ iff $m \alpha(a)=0$,
where $\alpha: R \rightarrow R$ is a ring endomorphism with $\alpha(1)=1$. The module M_{R} is called a reduced module if M is 1_{R}-reduced, where 1_{R} is the identity endomorphism of R. It is clear that R is a reduced ring iff R_{R} is a reduced module.

* Corresponding author.

Received 10 January 2008; revised 12 August 2008; accepted 21 October 2008.
2000 Mathematics Subject Classification: 16D80, 16S36.
Key words and phrases: quasi-Baer modules, p.q.-Baer modules, Armendariz modules, skew polynomial modules.

According to Annin [1], a module M_{R} is called α-compatible if $m a=0$ if and only if $m \alpha(a)=0$ (i.e., only the second condition is satisfied in the definition of α-reduced modules). It is clear that, if M_{R} is α-compatible then, $m a=0$ if and only if $m \alpha^{k}(a)=0$ for all k and every α-reduced modules are α-compatible. We write $R[x], R[[x]], R\left[x, x^{-1}\right]$ and $R\left[\left[x, x^{-1}\right]\right]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively. In [9] Lee-Zhou introduced the following notation. For a module M_{R}, we consider

$$
\begin{aligned}
& M[x ; \alpha]=\left\{\sum_{i=0}^{s} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\} \\
& M[[x ; \alpha]]=\left\{\sum_{i=0}^{\infty} m_{i} x^{i}: m_{i} \in M\right\} \\
& M\left[x, x^{-1} ; \alpha\right]=\left\{\sum_{i=-s}^{t} m_{i} x^{i}: s \geq 0, t \geq 0, m_{i} \in M\right\} \\
& M\left[\left[x, x^{-1} ; \alpha\right]\right]=\left\{\sum_{i=-s}^{\infty} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\}
\end{aligned}
$$

Each of these is an Abelian group under an obvious addition operation. Moreover $M[x ; \alpha]$ becomes a module over $R[x ; \alpha]$ under the following scalar product operation: For $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x ; \alpha]$ and $f(x)=\sum_{i=0}^{t} a_{i} x^{i} \in R[x ; \alpha]$;

$$
m(x) f(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} m_{i} \alpha^{i}\left(a_{j}\right)\right) x^{k}
$$

Similarly, $M[[x ; \alpha]]$ is a module over $R[[x ; \alpha]]$. The modules $M[x ; \alpha]$ and $M[[x ; \alpha]]$ are called the skew polynomial extension and the skew power series extension of M respectively. If $\alpha \in \operatorname{Aut}(R)$, then with a similar scalar product, $M\left[\left[x, x^{-1} ; \alpha\right]\right]$ (resp. $M\left[x, x^{-1} ; \alpha\right]$) becomes a module over $R\left[\left[x, x^{-1} ; \alpha\right]\right]$ (resp. $R\left[x, x^{-1} ; \alpha\right]$). The modules $M\left[x, x^{-1} ; \alpha\right]$ and $M\left[\left[x, x^{-1} ; \alpha\right]\right]$ are called the skew Laurent polynomial extension and the skew Laurent power series extension of M, respectively.

Following Lee-Zhou [9], a module M_{R} is called Armendariz if, whenever $m(x) f(x)=0$ where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, we have $m_{i} a_{j}=0$ for all i, j. By [9, Lemma 1.5], every reduced module is Armendariz. In [3], we define a module M_{R} to be quasi-Armendariz if whenever these polynomials satisfy $m(x) R[x] f(x)=0$, we have $m_{i} R a_{j}=0$ for all i, j.

For a subset X of a module M_{R}, let $r_{R}(X)=\{r \in R: X r=0\}$. In [9] LeeZhou introduced quasi-Baer module as follows: M_{R} is called quasi-Baer if, for any submodule N of $M, r_{R}(N)=e R$ where $e^{2}=e \in R$. Clearly R is a quasi-Baer ring iff R_{R} is quasi-Baer module; if R is a quasi-Baer ring then, for any right ideal I of R, I_{R} is a quasi-Baer module. Following [3], M_{R} is called principally quasi-Baer (or simply p.q.-Baer) module if, for any $m \in M, r_{R}(m R)=e R$ where $e^{2}=e \in R$. It is clear that R is a right p.q.-Baer ring iff R_{R} is a p.q.-Baer module. If R is a p.q.-Baer ring, then for any right ideal I of R, I_{R} is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer.

Motivated by results in Lee-Zhou [9], [3] and [2] we investigate a generalization of α-reduced modules and introduce skew quasi-Armendariz types module which are skew polynomials versions of the quasi-Armendariz modules.

2. Skew polynomial and power series modules over quasi-Baer and p.q.Baer modules

In this section we investigate a generalization of α-reduced modules and introduce skew quasi-Armendariz and skew quasi-Armendariz of power series type modules, which are skew polynomial versions of the quasi-Armendariz modules. We then extend our previous results in [2] to non α-reduced α-compatible modules. Assume that M_{R} is an α-compatible module. Then we will show that:
(1) M_{R} is p.q.-Baer module if and only if $M[x ; \alpha]_{R[x ; \alpha]}$ is p.q.-Baer module.
(2) M_{R} is quasi-Baer module if and only if $M[x ; \alpha]_{R[x ; \alpha]}$ is quasi-Baer module if and only if $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is quasi-Baer module.
(3) If $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is p.q-Baer module then M_{R} is p.q.-Baer module.

Definition 2.1. A module M_{R} is called,
(i) skew quasi-Armendariz, if whenever $m(x) R[x ; \alpha] f(x)=0$ for $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in$ $M[x ; \alpha]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x ; \alpha]$, then $m_{i} R a_{j}=0$ for all i, j.
(ii) skew quasi-Armendariz of power series type, if whenever $m(x) R[[x ; \alpha]] f(x)=0$ for $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x ; \alpha]]$ and $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in R[[x ; \alpha]]$, then $m_{i} R a_{j}=0$ for all i, j.

Note that if M_{R} is assumed to be α-reduced, then it is clear that M_{R} is skew quasi-Armendariz and skew quasi-Armendariz of power series type. To see that, let $m(x) R[[x ; \alpha]] f(x)=0$ for $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x ; \alpha]]$ and $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in$ $R[[x ; \alpha]]$. Then $m(x) R f(x)=0$ and so $m(x) c f(x)=0$ for all $c \in R$. Hence $0=$ $\left(\sum_{i=0}^{\infty} m_{i} x^{i}\right) c\left(\sum_{j=0}^{\infty} a_{j} x^{j}\right)=\left(\sum_{i=0}^{\infty} m_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} c a_{j} x^{j}\right)$. Since M_{R} is α-reduced, M_{R} satisfies all the hypothesis of [9, Lemma 1.5] by [9, Lemma 1.2]. Hence, we have $m_{i} \alpha^{i}\left(c a_{j}\right)=0$ and so $m_{i} c a_{j}=0$ for all i, j, since M_{R} is α-compatible. Then $m_{i} R a_{j}=0$ for all i, j and therefore, M_{R} is skew quasi-Armendariz of power series type.

Following [8], for a module $M_{R}, \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right)=\left\{r_{R}(U) \mid U\right.$ is a submodule of $\left.M_{R}\right\}$.

Proposition 2.2. Let M_{R} be an α-compatible module. Then the following statements are equivalent:
(1) M_{R} is skew quasi-Armendariz.
(2) $\psi: \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right) \rightarrow \operatorname{rAnn}_{R[x ; \alpha]}\left(\operatorname{sub}\left(M[x ; \alpha]_{R[x ; \alpha]}\right)\right)$; $I \mapsto I[x ; \alpha]$ is bijective.
Proof. (1) $\Rightarrow(2)$ Let $I \in \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right)$. Then there exists a submodule U of M_{R} such that $I=r_{R}(U)$. Then we have $r_{R}(U)[x ; \alpha]=r_{R[x ; \alpha]}(U[x ; \alpha])$ since M_{R} is α-compatible. So ψ is well-defined. Obviously ψ is injective. Now, for a submodule V of $M[x ; \alpha]_{R[x ; \alpha]}$, let $r_{R[x ; \alpha]}(V) \in \operatorname{rAnn}_{R[x ; \alpha]}\left(\operatorname{sub}\left(M[x ; \alpha]_{R[x ; \alpha]}\right)\right)$. Let C_{V} denote the set of coefficients of elements of V. Then $C_{V} R$ is a submodule of M_{R}. We claim that $\psi\left(r_{R}\left(C_{V} R\right)\right)=r_{R}\left(C_{V} R\right)[x ; \alpha]=r_{R[x ; \alpha]}(V)$. Let $f(x)=a_{0}+a_{1} x+\cdots+a_{t} x^{t} \in r_{R}\left(C_{V} R\right)[x ; \alpha]$. Then $a_{i} \in r_{R}\left(C_{V} R\right)$ and hence $\left(C_{V} R\right) a_{i}=0$ and in particular $C_{V} a_{i}=0$ for all i. Since M_{R} is α-compatible
$C_{V} \alpha^{k}\left(a_{i}\right)=0$ for all k. Then $v(x) f(x)=0$ for all $v(x) \in V$. Thus $V f(x)=0$ and hence $f(x) \in r_{R[x ; \alpha]}(V)$. Therefore $r_{R}\left(C_{V} R\right)[x ; \alpha] \subseteq r_{R[x ; \alpha]}(V)$. Conversely, let $g(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n} \in r_{R[x ; \alpha]}(V)$. Then $V g(x)=0$ and since V is a submodule of $M[x ; \alpha]_{R[x ; \alpha]}, v(x) R[x ; \alpha] g(x)=0$ for all $v(x) \in V$. Since M_{R} is skew quasi-Armendariz, $v R b_{j}=0$ for all $v \in C_{V}$ and $j=0,1, \cdots, n$. Hence $\left(C_{V} R\right) b_{j}=0$ for all j. Therefore $g(x) \in r_{R}\left(C_{V} R\right)[x ; \alpha]$. Thus $r_{R[x ; \alpha]}(V) \subseteq r_{R}\left(C_{V} R\right)[x ; \alpha]$. Consequently, ψ is surjective.
(2) \Rightarrow (1) Suppose $m(x) R[x ; \alpha] f(x)=0$ for $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x ; \alpha]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x ; \alpha]$. Then $f(x) \in r_{R[x ; \alpha]}(m(x) R[x ; \alpha])=r_{R}(C R)[x ; \alpha]$, where C is denote the set of coefficients of elements of $m(x) R[x ; \alpha]$. Then $a_{j} \in r_{R}(C R)$ and so $(C R) a_{j}=0$. In particular $m_{i} R a_{j}=0$ for all i, j. Therefore M_{R} is skew quasi-Armendariz.

Proposition 2.3. Let M_{R} be an α-compatible module. Then the following statements are equivalent:
(1) M_{R} is skew quasi-Armendariz of power series type.
(2) $\psi^{\prime}: \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right) \rightarrow \operatorname{rAnn}_{R[[x ; \alpha]]}\left(\operatorname{sub}\left(M[[x ; \alpha]]_{R[[x ; \alpha]]}\right)\right)$;
$J \mapsto J[[x ; \alpha]]$ is bijective.
Proof. Similar to the proof of Proposition 2.2.
Definition 2.4. A submodule N of a left R-module M is called a pure submodule if $L \otimes_{R} N \rightarrow L \otimes_{R} M$ is a monomorphism for every right R-module L.

Following Tominaga [11], an ideal I of R is said to be left s-unital if for each $a \in I$ there exists an $x \in I$ such that $x a=a$. If an ideal I of R is left s-unital, then for any finite subset F of I, there exists an element $e \in I$ such that $e x=e$ for all $x \in F$. By [10, Proposition 11.3.13], for an ideal I, the following conditions are equivalent:
(1) I is pure as a right ideal in R,
(2) R / I is flat as a right R-module,
(3) I is left s-unital.

Theorem 2.5. Let M_{R} be an α-compatible module. Then the following are equivalent:
(1) $r_{R}(m R)$ is pure as a right ideal in R for any element $m \in M_{R}$.
(2) $r_{R[x ; \alpha]}(m(x) R[x ; \alpha])$ is a pure as a right ideal in $R[x ; \alpha]$ for any element $m(x) \in M[x ; \alpha]$. In this case M_{R} is skew quasi-Armendariz.
Proof. $(1) \Rightarrow(2)$ Assume that condition (1) holds. First we shall prove that M_{R} is skew quasi-Armendariz. Suppose $m(x) R[x ; \alpha] f(x)=0$ for $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in$ $M[x ; \alpha]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x ; \alpha]$. Then $\left(\sum_{i=0}^{s} m_{i} x^{i}\right) R\left(\sum_{j=0}^{t} a_{j} x^{j}\right)=0$.
Let c be an arbitrary element of R. Then we have the following equation:
(1) $0=m_{0} c a_{0}+\cdots+\left(m_{s} \alpha^{s}\left(c a_{t-2}\right)+m_{s-1} \alpha^{s-1}\left(c a_{t-1}\right)+m_{s-2} \alpha^{s-2}\left(c a_{t}\right)\right) x^{s+t-2}$ $+\left(m_{s} \alpha^{s}\left(c a_{t-1}\right)+m_{s-1} \alpha^{s-1}\left(c a_{t}\right)\right) x^{s+t-1}+m_{s} \alpha^{s}\left(c a_{t}\right) x^{s+t}$.

Then $m_{s} \alpha^{s}\left(c a_{t}\right)=0$ and hence $m_{s} c a_{t}=0$ since M_{R} is α-compatible. Thus $m_{s} R a_{t}=0$ and so $a_{t} \in r_{R}\left(m_{s} R\right)$. By hypothesis, $r_{R}\left(m_{s} R\right)$ is left s-unital, and hence there exists $e_{s} \in r_{R}\left(m_{s} R\right)$ such that $e_{s} a_{t}=a_{t}$. Replacing c by $c e_{s}$ in Eq.(1), we obtain
(2) $0=m_{0} c e_{s} a_{0}+\cdots+\left(m_{s} \alpha^{s}\left(c e_{s} a_{t-2}\right)+m_{s-1} \alpha^{s-1}\left(c e_{s} a_{t-1}\right)+m_{s-2} \alpha^{s-2}\left(c e_{s} a_{t}\right)\right)$

$$
x^{s+t-2}+\left(m_{s} \alpha^{s}\left(c e_{s} a_{t-1}\right)+m_{s-1} \alpha^{s-1}\left(c e_{s} a_{t}\right)\right) x^{s+t-1}+m_{s} \alpha^{s}\left(c e_{s} a_{t}\right) x^{s+t}
$$

Since $e_{s} \in r_{R}\left(m_{s} R\right), m_{s} R e_{s}=0$ and $m_{s} \alpha^{k}\left(R e_{s}\right)=0$ for all k since M_{R} is α compatible. Using $e_{s} a_{t}=a_{t}$ and $m_{s} \alpha^{k}\left(R e_{s}\right)=0$, we obtain from Eq.(2)

$$
\begin{array}{r}
0=m_{0} c e_{s} a_{0}+\cdots+\left(m_{s-1} \alpha^{s-1}\left(c e_{s} a_{t-1}\right)+m_{s-2} \alpha^{s-2}\left(c a_{t}\right)\right) x^{s+t-2}+ \\
m_{s-1} \alpha^{s-1}\left(c a_{t}\right) x^{s+t-1}
\end{array}
$$

Then we obtain $m_{s-1} \alpha^{s-1}\left(c a_{t}\right)=0$ and hence $m_{s-1} c a_{t}=0$ and so $m_{s-1} R a_{t}=0$ since M_{R} is α-compatible. Thus $a_{t} \in r_{R}\left(m_{s-1} R\right)$ and hence $a_{t} \in r_{R}\left(m_{s} R\right) \cap$ $r_{R}\left(m_{s-1} R\right)$. Since $r_{R}\left(m_{s-1} R\right)$ is left s-unital, there exists $f \in r_{R}\left(m_{s-1} R\right)$ such that $f a_{t}=a_{t}$. If we put $e_{s-1}=f e_{s}$ then $e_{s-1} a_{t}=a_{t}$ and $e_{s-1} \in r_{R}\left(m_{s} R\right) \cap$ $r_{R}\left(m_{s-1} R\right)$. Next, replacing c by $c e_{s-1}$ in Eq.(1), we obtain $m_{s-2} c a_{t}=0$ in the same way as above. Hence we have $a_{t} \in r_{R}\left(m_{s} R\right) \cap r_{R}\left(m_{s-1} R\right) \cap r_{R}\left(m_{s-2} R\right)$. Continuing this process, we obtain $m_{i} R a_{t}=0$ for all $i=0,1, \cdots, s$. Thus we get $\left(\sum_{i=0}^{s} m_{i} x^{i}\right) R[x ; \alpha]\left(\sum_{j=0}^{t-1} a_{j} x^{j}\right)=0$, since M_{R} is α-compatible. Using induction on $s+t$, we obtain $m_{i} R a_{j}=0$ for all i, j. Thus we proved that M_{R} is skew quasiArmendariz. Now, let $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x ; \alpha]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in$ $r_{R[x ; \alpha]}(m(x) R[x ; \alpha])$. Then $m(x) R[x ; \alpha] f(x)=0$ and so $m_{i} R a_{j}=0$ for all i, j since M_{R} is skew quasi-Armendariz. Since $r_{R}\left(m_{i} R\right)$ is left s-unital, there exists $e_{i} \in r_{R}\left(m_{i} R\right)$ such that $a_{j}=e_{i} a_{j}$ for $j=0,1, \cdots, t$. Put $e=e_{0} e_{1} \cdots e_{s}$, then $a_{j}=e a_{j}$ for $j=0,1, \cdots, t$. Hence $e f(x)=f(x)$ and $e \in r_{R[x ; \alpha]}(m(x) R[x ; \alpha])$ since $e_{i} \in r_{R}\left(m_{i} R\right)$ and M_{R} is α-compatible. Therefore $r_{R[x ; \alpha]}(m(x) R[x ; \alpha])$ is left s-unital.
$(2) \Rightarrow(1)$ Suppose that condition (2) holds. Let m be an element of M_{R}. Since M_{R} is α-compatible, $r_{R}(m R) \subseteq r_{R[x ; \alpha]}(m R[x ; \alpha])$. Hence for any $b \in r_{R}(m R)$, there exists a polynomial $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in r_{R[x ; \alpha]}(m R[x ; \alpha])$ such that $f(x) b=b$. Then $a_{0} b=b$ and $a_{0} \in r_{R}(m R)$. This implies that $r_{R}(m R)$ is left s-unital.

Corollary 2.6. Let M_{R} be an α-compatible module. Then M_{R} is p.q.-Baer if and only if $M[x ; \alpha]_{R[x ; \alpha]}$ is p.q.-Baer. In this case M_{R} is skew quasi-Armendariz.
Proof. Let M_{R} be a p.q.-Baer module. Then for each $m \in M$, there exists $e^{2}=$ $e \in R$, such that $r_{R}(m R)=e R$. Thus $r_{R}(m R)$ is left s-unital for each $m \in M$. It follows from Theorem 2.5 that M_{R} is skew quasi-Armandariz. If $r_{R}(m R)=e R$ for some $e^{2}=e \in R$, then we see that ere $=r e$ holds for each $r \in R$. Thus if $r_{R}\left(m_{i} R\right)=e_{i} R$, for $i=0,1, \cdots, n$, then we get $r_{R}\left(m_{0} R+m_{1} R+\cdots+m_{n} R\right)=e R$, where $e=e_{0} e_{1} \cdots e_{n}$ and $e^{2}=e \in R$. Now, let $m(x)=m_{0}+m_{1} x+\cdots+m_{n} x^{n}$ and $f(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ such that $f(x) \in r_{R[x ; \alpha]}(m(x) R[x ; \alpha])$. Then $m_{i} R a_{j}=0$
since M_{R} is skew quasi-Armendariz. Let $r_{R}\left(m_{i} R\right)=e_{i} R$, for $i=0,1, \cdots, n$ and $e=e_{0} e_{1} \cdots e_{n}$. Then $r_{R[x ; \alpha]}(m(x) R[x ; \alpha])=e R[x ; \alpha]$ and hence we learn that $M[x ; \alpha]_{R[x ; \alpha]}$ is p.q.-Baer.
The proof for the converse part can be done similarly, and therefore is omitted.
Remark 2.7. Since α-reduced modules are α-compatible, Corollary 2.6 extends [2 , Theorem 7(1)(a)].

Corollary 2.8. Let M_{R} be a module. Then M_{R} is p.q.-Baer if and only if $M[x]_{R[x]}$ is p.q.-Baer. In this case M_{R} is quasi-Armendariz.

Corollary 2.9([6, Theorem 3.1]). R is a right p.q.-Baer ring if and only if $R[x]$ is a right p.q.-Baer ring.

Proposition 2.10. Let M_{R} be an α-compatible module. Then $(1) \Rightarrow(2) \Rightarrow(3)$.
(1) $r_{R[[x ; \alpha]]}(m(x) R[[x ; \alpha]])$ is a pure as a right ideal in $R[[x ; \alpha]]$ for any element $m(x) \in M[[x ; \alpha]]$.
(2) $r_{R}(m R)$ is pure as a right ideal in R for any element $m \in M_{R}$.
(3) M_{R} is skew quasi-Armendariz of power series type.

Proof. (1) $\Rightarrow(2)$ The proof is similar to that of Theorem 2.5.
$(2) \Rightarrow(3)$ Assume that $m(x) R[[x ; \alpha]] f(x)=0$ for $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x ; \alpha]]$ and $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in R[[x ; \alpha]]$. Then $m(x) R f(x)=0$ and so we have the following equation for an arbitrary $c \in R$:

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(\sum_{i+j=k} m_{i} x^{i} c a_{j} x^{j}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} m_{i} \alpha^{i}\left(c a_{j}\right) x^{i+j}\right)=0 \tag{3}
\end{equation*}
$$

We will show that $m_{i} R a_{j}=0$ for all i, j. We proceed by induction on $i+j$. From Eq.(3), we obtain, $m_{0} R a_{0}=0$. This proves $i+j=0$. Now suppose that $m_{i} R a_{j}=0$ for $i+j \leq n-1$. Hence $a_{j} \in r_{R}\left(m_{i} R\right)$ for $j=0,1, \cdots, n-1$ and $i=0,1, \cdots, n-1-j$. Since $r_{R}\left(m_{i} R\right)$ is left s-unital, there exists $e_{j i} \in r_{R}\left(m_{i} R\right)$ such that $e_{j i} a_{j}=a_{j}$ for $j=0,1, \cdots, n-1$ and $i=0,1, \cdots, n-1-j$. From Eq.(3), we have:

$$
\begin{equation*}
\sum_{i+j=k} m_{i} \alpha^{i}\left(c a_{j}\right)=0 \quad \text { for all } \quad k \geq 0 \tag{4}
\end{equation*}
$$

If we put $f_{j}=e_{j 1} e_{j 2} \cdots e_{j(n-1-j)}$ for $j=0,1, \cdots, n-1$, then $f_{j} a_{j}=a_{j}$ and $f_{j} \in r_{R}\left(m_{0} R\right) \cap r_{R}\left(m_{1} R\right) \cap \cdots \cap r_{R}\left(m_{n-1-j} R\right)$. For $k=n$ replacing c by $c f_{0}$ in Eq.(4), we obtain $m_{n} c a_{0}=m_{n} c f_{0} a_{0}=0$. Hence $m_{n} R a_{0}=0$. Continuing this process (replacing c by $c f_{j}$ in Eq.(4), for $j=0,1, \cdots, n-1$ and using α-compatibility of M_{R}), we obtain $m_{i} R a_{j}=0$ for $i+j=n$. Therefore M_{R} is skew quasi-Armendariz of power series type.

Since quasi-Baer modules satisfy the hypothesis of Theorem 2.5 and Proposition 2.10 we have,

Corollary 2.11([9, Theorem 2.13(1)]). Let M_{R} be an α-compatible module. Then M_{R} is quasi-Baer iff $M[x ; \alpha]_{R[x ; \alpha]}$ is quasi-Baer iff $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is quasi-Baer. Proof. The proof follows very similar to that of Corollary 2.6.

Corollary 2.12 ([2, Theorem $7(1)(\mathrm{b})])$. Let M_{R} be an α-compatible module. If $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is p.q.-Baer then M_{R} is p.q.-Baer.

3. Skew Laurent polynomial and power series modules over quasi-Baer and p.q.-Baer modules

In this section we introduce skew quasi-Armendariz of Laurent type modules ans skew quasi-Armendariz of Laurent power series type modules, which are skew Laurent polynomial version of the quasi-Armendariz modules and then study on the relationship between the quasi-Baerness and p.q.-Baer property of a module M_{R} and those of the skew Laurent polynomials and skew Laurent series. As a consequence we obtain a generalization of [2] and some result in [9].

Definition 3.1. Let α be an automorphism of R. A module M_{R} is called:
(i) skew quasi-Armendariz of Laurent type, if whenever $m(x) R\left[x, x^{-1} ; \alpha\right] f(x)=0$ for $m(x)=\sum_{i=-s}^{t} m_{i} x^{i} \in M\left[x, x^{-1} ; \alpha\right]$ and $f(x)=\sum_{j=-p}^{q} a_{j} x^{j} \in R\left[x, x^{-1} ; \alpha\right]$, then $m_{i} R a_{j}=0$ for all i, j.
(ii) skew quasi-Armendariz of Laurent power series type if whenever $m(x) R\left[\left[x, x^{-1} ; \alpha\right]\right]$ $f(x)=0$ for $m(x)=\sum_{i=-s}^{\infty} m_{i} x^{i} \in M\left[\left[x, x^{-1} ; \alpha\right]\right]$ and $f(x)=\sum_{j=-p}^{\infty} a_{j} x^{j} \in$ $R\left[\left[x, x^{-1} ; \alpha\right]\right]$, then $m_{i} R a_{j}=0$ for all i, j.

Note that if M_{R} is assumed to be α-reduced, then it is clear that M_{R} is skew quasi-Armendariz of Laurent type and skew quasi-Armendariz of Laurent power series type. In a similar way as in the proof of Proposition 2.2 and Theorem 2.5, we can prove the following results.
Proposition 3.2. Let α be an automorphism of $a \operatorname{ring} R$ and M_{R} be an α compatible module. Then the following statements are equivalent:
(1) M_{R} is skew quasi-Armendariz of Laurent type.
(2) $\psi: \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right) \rightarrow \operatorname{rAnn}_{R\left[x, x^{-1} ; \alpha\right]}\left(\operatorname{sub}\left(M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}\right)\right)$;
$I \mapsto I\left[x, x^{-1} ; \alpha\right]$ is bijective.
Proposition 3.3. Let α be an automorphism of $a \operatorname{ring} R$ and M_{R} be an α compatible module. Then the following statements are equivalent:
(1) M_{R} is skew quasi-Armendariz of Laurent power series type.
(2) $\psi^{\prime}: \operatorname{rAnn}_{R}\left(\operatorname{sub}\left(M_{R}\right)\right) \rightarrow \operatorname{rAnn}_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}\left(\operatorname{sub}\left(M\left[\left[x, x^{-1} ; \alpha\right]\right]_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}\right)\right)$; $I \mapsto I\left[\left[x, x^{-1} ; \alpha\right]\right]$ is bijective.

Theorem 3.4. Let α be an automorphism of a ring R and M_{R} be an α-compatible module. Then the following are equivalent:
(1) $r_{R}(m R)$ is pure as a right ideal in R for any element $m \in M_{R}$.
(2) $r_{R\left[x, x^{-1} ; \alpha\right]}\left(m(x) R\left[x, x^{-1} ; \alpha\right]\right)$ is a pure as a right ideal in $R\left[x, x^{-1} ; \alpha\right]$ for any
elementm $(x) \in M\left[x, x^{-1} ; \alpha\right]$. In this case M_{R} is skew quasi-Armendariz of Laurent type.

Corollary 3.5. Let α be an automorphism of a ring R and M_{R} be an α-compatible module. Then M_{R} is p.q.-Baer if and only if $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is p.q.-Baer. In this case M_{R} is skew quasi-Armendariz of Laurent type.
Remark 3.6. Since α-reduced modules are α-compatible modules, the Corollary 3.5 extends [2, Theorem 7(2)(a)].

Proposition 3.7. Let α be an automorphism of $a \operatorname{ring} R$ and M_{R} be an α compatible module. Then $(1) \Rightarrow(2) \Rightarrow(3)$.
(1) $r_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}\left(m(x) R\left[\left[x, x^{-1} ; \alpha\right]\right]\right)$ is a pure as a right ideal in $R\left[\left[x, x^{-1} ; \alpha\right]\right]$ for any element $m(x) \in M\left[\left[x, x^{-1} ; \alpha\right]\right]$.
(2) $r_{R}(m R)$ is pure as a right ideal in R for any element $m \in M_{R}$.
(3) M_{R} is skew quasi-Armendariz of Laurent power series type.

Corollary 3.8([2, Theorem 7(2)(b)]). Let α be an automorphism of a ring R and M_{R} be an α-compatible module. If $M\left[\left[x, x^{-1} ; \alpha\right]\right]_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}$ is p.q.-Baer then M_{R} is p.q.-Baer.

Since quasi-Baer modules satisfy the hypothesis of Theorem 3.4 and Proposition 3.7 we have;

Corollary 3.9([9, Theorem 2.13(2)]. Let α be an automorphism of a ring R and M_{R} be an α-compatible module. Then M_{R} is quasi-Baer iff $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is quasi-Baer iff $M\left[\left[x, x^{-1} ; \alpha\right]\right]_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}$ is quasi-Baer.
Corollary 3.10([9, Corollary 2.14]). M_{R} is quasi-Baer iff $M[x]_{R[x]}$ is quasi-Baer iff $M[[x]]_{R[[x]]}$ is quasi-Baer iff $M\left[x, x^{-1}\right]_{R\left[x, x^{-1}\right]}$ is quasi-Baer iff $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$ is quasi-Baer.
Corollary 3.11([4, Theorem 1.8]). R is quasi-Baer iff $R[x]$ is quasi-Baer iff $R[[x]]$ is quasi-Baer iff $R\left[x, x^{-1}\right]$ is quasi-Baer iff $R\left[\left[x, x^{-1}\right]\right]$ is quasi-Baer.

Acknowledgment. The authors would like to thank the referee for helpful comments and suggestions.

References

[1] S. Annin, Attached Primes Under Skew Polynomial Extensions, Preprint.
[2] M. Başer and A. Harmanci, Reduced and p.q.-Baer Modules, Taiwanese J. Math., 11(2007), 267-257.
[3] M. Başer and M. T. Koşan, On Quasi-Armendariz Modules, Taiwanese J. Math., 12(2008), 573-582.
[4] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasiBaer rings, J. Pure Appl. Algebra, 159(2001), 24-42.
[5] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings, Comm. Algebra, 29(2001), 639-660.
[6] G. F. Birkenmeier, J. Y. Kim, J. K. Park, On Polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J., 40(2000), 247-253.
[7] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34(1967), 417-424.
[8] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168(2002), 45-52.
[9] T. K. Lee and Y. Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, Lecture Notes in Pure and Appl. Math., 236(2004), 365-377.
[10] B. Stenstrom, Rings of Quotients, Springer(Berlin), 1975.
[11] H. Tominaga, On s-unital rings, Math. J. Okoyama Univ., 18(1976), 117-134.

