KYUNGPOOK Math. J. 49(2009), 255-263

On Quasi-Baer and p.q.-Baer Modules

MUHITTIN BAŞER* Department of Mathematics, Kocatepe University, Afyonkarahisar 03200, Turkey e-mail: mbaser@aku.edu.tr

ABDULLAH HARMANCI Department of Mathematics, Hacettepe University, Ankara, Turkey e-mail: harmanci@hacettepe.edu.tr

ABSTRACT. For an endomorphism α of R, in [1], a module M_R is called α -compatible if, for any $m \in M$ and $a \in R$, ma = 0 iff $m\alpha(a) = 0$, which are a generalization of α -reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module M_R and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an α -compatible module M_R (1) M_R is p.q.-Baer module iff $M[x; \alpha]_{R[x;\alpha]}$ is p.q.-Baer module. (2) for an automorphism α of R, M_R is p.q.-Baer module iff $M[x, x^{-1}; \alpha]_{R[x, x^{-1}; \alpha]}$ is p.q.-Baer module.

1. Introduction

Throughout this work all rings R are associative with identity and modules are unital right R-modules and $\alpha : R \to R$ is an endomorphism of the ring R. In [7] Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al. [5] called a ring R right (resp. left) principally quasi-Baer [or simply right (resp. left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left) ideal of R is generated by an idempotent. R is called p.q.-Baer if it is both right and left p.q.-Baer. A ring is called reduced ring if it has no nonzero nilpotent elements and M_R is called α -reduced module by Lee-Zhou [9] if, for any $m \in M$ and $a \in R$,

(1) ma = 0 implies $mR \cap Ma = 0$,

(2) ma = 0 iff $m\alpha(a) = 0$,

where $\alpha : R \to R$ is a ring endomorphism with $\alpha(1) = 1$. The module M_R is called a reduced module if M is 1_R -reduced, where 1_R is the identity endomorphism of R. It is clear that R is a reduced ring iff R_R is a reduced module.

Key words and phrases: quasi-Baer modules, p.q.-Baer modules, Armendariz modules, skew polynomial modules.

^{*} Corresponding author.

Received 10 January 2008; revised 12 August 2008; accepted 21 October 2008. 2000 Mathematics Subject Classification: 16D80, 16S36.

According to Annin [1], a module M_R is called α -compatible if ma = 0 if and only if $m\alpha(a) = 0$ (i.e., only the second condition is satisfied in the definition of α -reduced modules). It is clear that, if M_R is α -compatible then, ma = 0 if and only if $m\alpha^k(a) = 0$ for all k and every α -reduced modules are α -compatible. We write $R[x], R[[x]], R[x, x^{-1}]$ and $R[[x, x^{-1}]]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively. In [9] Lee-Zhou introduced the following notation. For a module M_R , we consider

- $M[x; \alpha] = \{\sum_{i=0}^{s} m_i x^i : s \ge 0, \ m_i \in M\}, \\ M[[x; \alpha]] = \{\sum_{i=0}^{\infty} m_i x^i : m_i \in M\}, \\ M[x, x^{-1}; \alpha] = \{\sum_{i=-s}^{t} m_i x^i : s \ge 0, \ t \ge 0, \ m_i \in M\}, \\ M[[x, x^{-1}; \alpha]] = \{\sum_{i=-s}^{\infty} m_i x^i : s \ge 0, \ m_i \in M\}.$

Each of these is an Abelian group under an obvious addition operation. Moreover $M[x;\alpha]$ becomes a module over $R[x;\alpha]$ under the following scalar product operation: For $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x; \alpha]$ and $f(x) = \sum_{i=0}^{t} a_i x^i \in R[x; \alpha];$

$$m(x)f(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} m_i \alpha^i(a_j)\right) x^k.$$

Similarly, $M[[x; \alpha]]$ is a module over $R[[x; \alpha]]$. The modules $M[x; \alpha]$ and $M[[x; \alpha]]$ are called the skew polynomial extension and the skew power series extension of M respectively. If $\alpha \in Aut(R)$, then with a similar scalar product, $M[[x, x^{-1}; \alpha]]$ (resp. $M[x, x^{-1}; \alpha]$) becomes a module over $R[[x, x^{-1}; \alpha]]$ (resp. $R[x, x^{-1}; \alpha]$). The modules $M[x, x^{-1}; \alpha]$ and $M[[x, x^{-1}; \alpha]]$ are called the *skew Laurent polynomial* extension and the skew Laurent power series extension of M, respectively.

Following Lee-Zhou [9], a module M_R is called Armendariz if, whenever m(x)f(x) = 0 where $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x]$, we have $m_i a_j = 0$ for all i, j. By [9, Lemma 1.5], every reduced module is Armendariz. In [3], we define a module M_R to be quasi-Armendariz if whenever these polynomials satisfy m(x)R[x]f(x) = 0, we have $m_iRa_j = 0$ for all i, j.

For a subset X of a module M_R , let $r_R(X) = \{r \in R : Xr = 0\}$. In [9] Lee-Zhou introduced quasi-Baer module as follows: M_R is called quasi-Baer if, for any submodule N of M, $r_R(N) = eR$ where $e^2 = e \in R$. Clearly R is a quasi-Baer ring iff R_R is quasi-Baer module; if R is a quasi-Baer ring then, for any right ideal I of R, I_R is a quasi-Baer module. Following [3], M_R is called *principally quasi-Baer* (or simply p.q.-Baer) module if, for any $m \in M$, $r_R(mR) = eR$ where $e^2 = e \in R$. It is clear that R is a right p.q.-Baer ring iff R_R is a p.q.-Baer module. If R is a p.q.-Baer ring, then for any right ideal I of R, I_R is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer.

Motivated by results in Lee-Zhou [9], [3] and [2] we investigate a generalization of α -reduced modules and introduce skew quasi-Armendariz types module which are skew polynomials versions of the quasi-Armendariz modules.

2. Skew polynomial and power series modules over quasi-Baer and p.q.-Baer modules

In this section we investigate a generalization of α -reduced modules and introduce skew quasi-Armendariz and skew quasi-Armendariz of power series type modules, which are skew polynomial versions of the quasi-Armendariz modules. We then extend our previous results in [2] to non α -reduced α -compatible modules. Assume that M_R is an α -compatible module. Then we will show that:

- (1) M_R is p.q.-Baer module if and only if $M[x;\alpha]_{R[x;\alpha]}$ is p.q.-Baer module.
- (2) M_R is quasi-Baer module if and only if $M[x; \alpha]_{R[x;\alpha]}$ is quasi-Baer module if and only if $M[[x; \alpha]]_{R[[x;\alpha]]}$ is quasi-Baer module.
- (3) If $M[[x;\alpha]]_{R[[x;\alpha]]}$ is p.q-Baer module then M_R is p.q.-Baer module.

Definition 2.1. A module M_R is called,

(i) skew quasi-Armendariz, if whenever $m(x)R[x;\alpha]f(x) = 0$ for $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x;\alpha]$, then $m_i Ra_j = 0$ for all i, j. (ii) skew quasi-Armendariz of power series type, if whenever $m(x)R[[x;\alpha]]f(x) = 0$ for $m(x) = \sum_{i=0}^{\infty} m_i x^i \in M[[x;\alpha]]$ and $f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x;\alpha]]$, then $m_i Ra_j = 0$ for all i, j.

Note that if M_R is assumed to be α -reduced, then it is clear that M_R is skew quasi-Armendariz and skew quasi-Armendariz of power series type. To see that, let $m(x)R[[x;\alpha]]f(x) = 0$ for $m(x) = \sum_{i=0}^{\infty} m_i x^i \in M[[x;\alpha]]$ and $f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x;\alpha]]$. Then m(x)Rf(x) = 0 and so m(x)cf(x) = 0 for all $c \in R$. Hence $0 = (\sum_{i=0}^{\infty} m_i x^i)c(\sum_{j=0}^{\infty} a_j x^j) = (\sum_{i=0}^{\infty} m_i x^i)(\sum_{j=0}^{\infty} ca_j x^j)$. Since M_R is α -reduced, M_R satisfies all the hypothesis of [9, Lemma 1.5] by [9, Lemma 1.2]. Hence, we have $m_i \alpha^i(ca_j) = 0$ and so $m_i ca_j = 0$ for all i, j, since M_R is α -compatible. Then $m_i Ra_j = 0$ for all i, j and therefore, M_R is skew quasi-Armendariz of power series type.

Following [8], for a module M_R , rAnn_R(sub (M_R))={ $r_R(U) \mid U$ is a submodule of M_R }.

Proposition 2.2. Let M_R be an α -compatible module. Then the following statements are equivalent:

(2) $\psi : \operatorname{rAnn}_R(\operatorname{sub}(M_R)) \to \operatorname{rAnn}_{R[x;\alpha]}(\operatorname{sub}(M[x;\alpha]_{R[x;\alpha]}));$ $I \mapsto I[x;\alpha] \text{ is bijective.}$

Proof. (1) \Rightarrow (2) Let $I \in \operatorname{rAnn}_R(\operatorname{sub}(M_R))$. Then there exists a submodule U of M_R such that $I = r_R(U)$. Then we have $r_R(U)[x;\alpha] = r_{R[x;\alpha]}(U[x;\alpha])$ since M_R is α -compatible. So ψ is well-defined. Obviously ψ is injective. Now, for a submodule V of $M[x;\alpha]_{R[x;\alpha]}$, let $r_{R[x;\alpha]}(V) \in \operatorname{rAnn}_{R[x;\alpha]}(\operatorname{sub}(M[x;\alpha]_{R[x;\alpha]}))$. Let C_V denote the set of coefficients of elements of V. Then C_VR is a submodule of M_R . We claim that $\psi(r_R(C_VR)) = r_R(C_VR)[x;\alpha] = r_{R[x;\alpha]}(V)$. Let $f(x) = a_0 + a_1x + \cdots + a_tx^t \in r_R(C_VR)[x;\alpha]$. Then $a_i \in r_R(C_VR)$ and hence $(C_VR)a_i = 0$ and in particular $C_Va_i = 0$ for all i. Since M_R is α -compatible

⁽¹⁾ M_R is skew quasi-Armendariz.

 $C_V \alpha^k(a_i) = 0$ for all k. Then v(x)f(x) = 0 for all $v(x) \in V$. Thus Vf(x) = 0and hence $f(x) \in r_{R[x;\alpha]}(V)$. Therefore $r_R(C_V R)[x;\alpha] \subseteq r_{R[x;\alpha]}(V)$. Conversely, let $g(x) = b_0 + b_1 x + \dots + b_n x^n \in r_{R[x;\alpha]}(V)$. Then Vg(x) = 0 and since V is a submodule of $M[x;\alpha]_{R[x;\alpha]}, v(x)R[x;\alpha]g(x) = 0$ for all $v(x) \in V$. Since M_R is skew quasi-Armendariz, $vRb_j = 0$ for all $v \in C_V$ and $j = 0, 1, \dots, n$. Hence $(C_V R)b_j = 0$ for all j. Therefore $g(x) \in r_R(C_V R)[x;\alpha]$. Thus $r_{R[x;\alpha]}(V) \subseteq r_R(C_V R)[x;\alpha]$. Consequently, ψ is surjective.

(2) \Rightarrow (1) Suppose $m(x)R[x;\alpha]f(x) = 0$ for $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x;\alpha]$. Then $f(x) \in r_{R[x;\alpha]}(m(x)R[x;\alpha]) = r_R(CR)[x;\alpha]$, where C is denote the set of coefficients of elements of $m(x)R[x;\alpha]$. Then $a_j \in r_R(CR)$ and so $(CR)a_j = 0$. In particular $m_iRa_j = 0$ for all i, j. Therefore M_R is skew quasi-Armendariz.

Proposition 2.3. Let M_R be an α -compatible module. Then the following statements are equivalent:

- (1) M_R is skew quasi-Armendariz of power series type.
- (2) ψ' : rAnn_R(sub(M_R)) \rightarrow rAnn_{R[[x;\alpha]]}(sub($M[[x;\alpha]]_{R[[x;\alpha]]}$)); $J \mapsto J[[x;\alpha]]$ is bijective.

Proof. Similar to the proof of Proposition 2.2.

Definition 2.4. A submodule N of a left R-module M is called a *pure submodule* if $L \otimes_R N \to L \otimes_R M$ is a monomorphism for every right R-module L.

Following Tominaga [11], an ideal I of R is said to be *left s-unital* if for each $a \in I$ there exists an $x \in I$ such that xa = a. If an ideal I of R is left s-unital, then for any finite subset F of I, there exists an element $e \in I$ such that ex = e for all $x \in F$. By [10, Proposition 11.3.13], for an ideal I, the following conditions are equivalent:

- (1) I is pure as a right ideal in R,
- (2) R/I is flat as a right *R*-module,
- (3) I is left s-unital.

Theorem 2.5. Let M_R be an α -compatible module. Then the following are equivalent:

(1) $r_R(mR)$ is pure as a right ideal in R for any element $m \in M_R$.

(2) $r_{R[x;\alpha]}(m(x)R[x;\alpha])$ is a pure as a right ideal in $R[x;\alpha]$ for any element $m(x) \in M[x;\alpha]$. In this case M_R is skew quasi-Armendariz.

Proof. (1) \Rightarrow (2) Assume that condition (1) holds. First we shall prove that M_R is skew quasi-Armendariz. Suppose $m(x)R[x;\alpha]f(x) = 0$ for $m(x) = \sum_{i=0}^{s} m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^{t} a_j x^j \in R[x;\alpha]$. Then $(\sum_{i=0}^{s} m_i x^i)R(\sum_{j=0}^{t} a_j x^j) = 0$. Let c be an arbitrary element of R. Then we have the following equation:

(1)
$$0 = m_0 ca_0 + \dots + (m_s \alpha^s (ca_{t-2}) + m_{s-1} \alpha^{s-1} (ca_{t-1}) + m_{s-2} \alpha^{s-2} (ca_t)) x^{s+t-2} + (m_s \alpha^s (ca_{t-1}) + m_{s-1} \alpha^{s-1} (ca_t)) x^{s+t-1} + m_s \alpha^s (ca_t) x^{s+t}.$$

258

Then $m_s \alpha^s(ca_t) = 0$ and hence $m_s ca_t = 0$ since M_R is α -compatible. Thus $m_s Ra_t = 0$ and so $a_t \in r_R(m_s R)$. By hypothesis, $r_R(m_s R)$ is left s-unital, and hence there exists $e_s \in r_R(m_s R)$ such that $e_s a_t = a_t$. Replacing c by ce_s in Eq.(1), we obtain

(2)
$$0 = m_0 ce_s a_0 + \dots + (m_s \alpha^s (ce_s a_{t-2}) + m_{s-1} \alpha^{s-1} (ce_s a_{t-1}) + m_{s-2} \alpha^{s-2} (ce_s a_t))$$
$$x^{s+t-2} + (m_s \alpha^s (ce_s a_{t-1}) + m_{s-1} \alpha^{s-1} (ce_s a_t)) x^{s+t-1} + m_s \alpha^s (ce_s a_t) x^{s+t}.$$

Since $e_s \in r_R(m_s R)$, $m_s Re_s = 0$ and $m_s \alpha^k(Re_s) = 0$ for all k since M_R is α compatible. Using $e_s a_t = a_t$ and $m_s \alpha^k(Re_s) = 0$, we obtain from Eq.(2)

$$0 = m_0 c e_s a_0 + \dots + (m_{s-1} \alpha^{s-1} (c e_s a_{t-1}) + m_{s-2} \alpha^{s-2} (c a_t)) x^{s+t-2} + m_{s-1} \alpha^{s-1} (c a_t) x^{s+t-1}.$$

Then we obtain $m_{s-1}\alpha^{s-1}(ca_t) = 0$ and hence $m_{s-1}ca_t = 0$ and so $m_{s-1}Ra_t = 0$ since M_R is α -compatible. Thus $a_t \in r_R(m_{s-1}R)$ and hence $a_t \in r_R(m_sR) \cap r_R(m_{s-1}R)$. Since $r_R(m_{s-1}R)$ is left s-unital, there exists $f \in r_R(m_{s-1}R)$ such that $fa_t = a_t$. If we put $e_{s-1} = fe_s$ then $e_{s-1}a_t = a_t$ and $e_{s-1} \in r_R(m_sR) \cap r_R(m_{s-1}R)$. Next, replacing c by ce_{s-1} in Eq.(1), we obtain $m_{s-2}ca_t = 0$ in the same way as above. Hence we have $a_t \in r_R(m_sR) \cap r_R(m_{s-1}R) \cap r_R(m_{s-2}R)$. Continuing this process, we obtain $m_iRa_t = 0$ for all $i = 0, 1, \dots, s$. Thus we get $(\sum_{i=0}^s m_i x^i)R[x;\alpha](\sum_{j=0}^{t-1}a_j x^j) = 0$, since M_R is α -compatible. Using induction on s + t, we obtain $m_iRa_j = 0$ for all i, j. Thus we proved that M_R is skew quasi-Armendariz. Now, let $m(x) = \sum_{i=0}^s m_i x^i \in M[x;\alpha]$ and $f(x) = \sum_{j=0}^t a_j x^j \in r_{R[x;\alpha]}(m(x)R[x;\alpha])$. Then $m(x)R[x;\alpha]f(x) = 0$ and so $m_iRa_j = 0$ for all i, j since M_R is skew quasi-Armendariz. Since $r_R(m_iR)$ is left s-unital, there exists $e_i \in r_R(m_iR)$ such that $a_j = e_ia_j$ for $j = 0, 1, \dots, t$. Put $e = e_0e_1 \dots e_s$, then $a_j = ea_j$ for $j = 0, 1, \dots, t$. Hence ef(x) = f(x) and $e \in r_{R[x;\alpha]}(m(x)R[x;\alpha])$ since $e_i \in r_R(m_iR)$ and M_R is α -compatible. Therefore $r_{R[x;\alpha]}(m(x)R[x;\alpha])$ is left s-unital.

 $(2) \Rightarrow (1)$ Suppose that condition (2) holds. Let *m* be an element of M_R . Since M_R is α -compatible, $r_R(mR) \subseteq r_{R[x;\alpha]}(mR[x;\alpha])$. Hence for any $b \in r_R(mR)$, there exists a polynomial $f(x) = \sum_{j=0}^t a_j x^j \in r_{R[x;\alpha]}(mR[x;\alpha])$ such that f(x)b = b. Then $a_0b = b$ and $a_0 \in r_R(mR)$. This implies that $r_R(mR)$ is left s-unital. \Box

Corollary 2.6. Let M_R be an α -compatible module. Then M_R is p.q.-Baer if and only if $M[x; \alpha]_{R[x;\alpha]}$ is p.q.-Baer. In this case M_R is skew quasi-Armendariz.

Proof. Let M_R be a p.q-Baer module. Then for each $m \in M$, there exists $e^2 = e \in R$, such that $r_R(mR) = eR$. Thus $r_R(mR)$ is left s-unital for each $m \in M$. It follows from Theorem 2.5 that M_R is skew quasi-Armandariz. If $r_R(mR) = eR$ for some $e^2 = e \in R$, then we see that ere = re holds for each $r \in R$. Thus if $r_R(m_iR) = e_iR$, for $i = 0, 1, \cdots, n$, then we get $r_R(m_0R + m_1R + \cdots + m_nR) = eR$, where $e = e_0e_1 \cdots e_n$ and $e^2 = e \in R$. Now, let $m(x) = m_0 + m_1x + \cdots + m_nx^n$ and $f(x) = a_0 + a_1x + \cdots + a_kx^k$ such that $f(x) \in r_{R[x;\alpha]}(m(x)R[x;\alpha])$. Then $m_iRa_j = 0$ since M_R is skew quasi-Armendariz. Let $r_R(m_i R) = e_i R$, for $i = 0, 1, \dots, n$ and $e = e_0 e_1 \cdots e_n$. Then $r_{R[x;\alpha]}(m(x)R[x;\alpha]) = eR[x;\alpha]$ and hence we learn that $M[x;\alpha]_{R[x;\alpha]}$ is p.q.-Baer.

The proof for the converse part can be done similarly, and therefore is omitted. \Box

Remark 2.7. Since α -reduced modules are α -compatible, Corollary 2.6 extends [2, Theorem 7(1)(a)].

Corollary 2.8. Let M_R be a module. Then M_R is p.q.-Baer if and only if $M[x]_{R[x]}$ is p.q.-Baer. In this case M_R is quasi-Armendariz.

Corollary 2.9([6, Theorem 3.1]). R is a right p.q.-Baer ring if and only if R[x] is a right p.q.-Baer ring.

Proposition 2.10. Let M_R be an α -compatible module. Then $(1) \Rightarrow (2) \Rightarrow (3)$. (1) $r_{R[[x;\alpha]]}(m(x)R[[x;\alpha]])$ is a pure as a right ideal in $R[[x;\alpha]]$ for any element $m(x) \in M[[x;\alpha]]$.

(2) $r_R(mR)$ is pure as a right ideal in R for any element $m \in M_R$.

(3) M_R is skew quasi-Armendariz of power series type.

Proof. (1) \Rightarrow (2) The proof is similar to that of Theorem 2.5. (2) \Rightarrow (3) Assume that $m(x)R[[x;\alpha]]f(x) = 0$ for $m(x) = \sum_{i=0}^{\infty} m_i x^i \in M[[x;\alpha]]$ and $f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x;\alpha]]$. Then m(x)Rf(x) = 0 and so we have the following equation for an arbitrary $c \in R$:

(3)
$$\sum_{k=0}^{\infty} \left(\sum_{i+j=k} m_i x^i c a_j x^j \right) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} m_i \alpha^i (c a_j) x^{i+j} \right) = 0.$$

We will show that $m_i Ra_j = 0$ for all i, j. We proceed by induction on i + j. From Eq.(3), we obtain, $m_0 Ra_0 = 0$. This proves i + j = 0. Now suppose that $m_i Ra_j = 0$ for $i + j \le n - 1$. Hence $a_j \in r_R(m_i R)$ for $j = 0, 1, \dots, n - 1$ and $i = 0, 1, \dots, n - 1 - j$. Since $r_R(m_i R)$ is left s-unital, there exists $e_{ji} \in r_R(m_i R)$ such that $e_{ji}a_j = a_j$ for $j = 0, 1, \dots, n - 1$ and $i = 0, 1, \dots, n - 1 - j$. From Eq.(3), we have:

(4)
$$\sum_{i+j=k} m_i \alpha^i(ca_j) = 0 \quad \text{for all} \quad k \ge 0.$$

If we put $f_j = e_{j1}e_{j2}\cdots e_{j(n-1-j)}$ for $j = 0, 1, \cdots, n-1$, then $f_ja_j = a_j$ and $f_j \in r_R(m_0R) \cap r_R(m_1R) \cap \cdots \cap r_R(m_{n-1-j}R)$. For k = n replacing c by cf_0 in Eq.(4), we obtain $m_nca_0 = m_ncf_0a_0 = 0$. Hence $m_nRa_0 = 0$. Continuing this process (replacing c by cf_j in Eq.(4), for $j = 0, 1, \cdots, n-1$ and using α -compatibility of M_R), we obtain $m_iRa_j = 0$ for i+j=n. Therefore M_R is skew quasi-Armendariz of power series type.

Since quasi-Baer modules satisfy the hypothesis of Theorem 2.5 and Proposition 2.10 we have,

Corollary 2.11([9, Theorem 2.13(1)]). Let M_R be an α -compatible module. Then M_R is quasi-Baer iff $M[x; \alpha]_{R[x;\alpha]}$ is quasi-Baer iff $M[[x; \alpha]]_{R[[x;\alpha]]}$ is quasi-Baer. Proof. The proof follows very similar to that of Corollary 2.6.

Corollary 2.12([2, Theorem 7(1)(b)]). Let M_R be an α -compatible module. If $M[[x;\alpha]]_{R[[x;\alpha]]}$ is p.q.-Baer then M_R is p.q.-Baer.

3. Skew Laurent polynomial and power series modules over quasi-Baer and p.q.-Baer modules

In this section we introduce skew quasi-Armendariz of Laurent type modules and skew quasi-Armendariz of Laurent power series type modules, which are skew Laurent polynomial version of the quasi-Armendariz modules and then study on the relationship between the quasi-Baerness and p.q.-Baer property of a module M_R and those of the skew Laurent polynomials and skew Laurent series. As a consequence we obtain a generalization of [2] and some result in [9].

Definition 3.1. Let α be an automorphism of R. A module M_R is called: (i) skew quasi-Armendariz of Laurent type, if whenever $m(x)R[x, x^{-1}; \alpha]f(x) = 0$ for $m(x) = \sum_{i=-s}^{t} m_i x^i \in M[x, x^{-1}; \alpha]$ and $f(x) = \sum_{j=-p}^{q} a_j x^j \in R[x, x^{-1}; \alpha]$, then $m_i Ra_j = 0$ for all i, j.

(ii) skew quasi-Armendariz of Laurent power series type if whenever $m(x)R[[x, x^{-1}; \alpha]]$ f(x) = 0 for $m(x) = \sum_{i=-s}^{\infty} m_i x^i \in M[[x, x^{-1}; \alpha]]$ and $f(x) = \sum_{j=-p}^{\infty} a_j x^j \in R[[x, x^{-1}; \alpha]]$, then $m_i Ra_j = 0$ for all i, j.

Note that if M_R is assumed to be α -reduced, then it is clear that M_R is skew quasi-Armendariz of Laurent type and skew quasi-Armendariz of Laurent power series type. In a similar way as in the proof of Proposition 2.2 and Theorem 2.5, we can prove the following results.

Proposition 3.2. Let α be an automorphism of a ring R and M_R be an α compatible module. Then the following statements are equivalent:

(1) M_R is skew quasi-Armendariz of Laurent type.

(2) $\psi : \operatorname{rAnn}_R(\operatorname{sub}(M_R)) \to \operatorname{rAnn}_{R[x,x^{-1};\alpha]}(\operatorname{sub}(M[x,x^{-1};\alpha]_{R[x,x^{-1};\alpha]}));$ $I \mapsto I[x,x^{-1};\alpha]$ is bijective.

Proposition 3.3. Let α be an automorphism of a ring R and M_R be an α compatible module. Then the following statements are equivalent:

(1) M_R is skew quasi-Armendariz of Laurent power series type.

(2) ψ' : rAnn_R(sub(M_R)) \rightarrow rAnn_{R[[x,x^{-1};\alpha]]}(sub($M[[x,x^{-1};\alpha]]_{R[[x,x^{-1};\alpha]]}$)); $I \mapsto I[[x,x^{-1};\alpha]]$ is bijective.

Theorem 3.4. Let α be an automorphism of a ring R and M_R be an α -compatible module. Then the following are equivalent:

- (1) $r_R(mR)$ is pure as a right ideal in R for any element $m \in M_R$.
- (2) $r_{R[x,x^{-1};\alpha]}(m(x)R[x,x^{-1};\alpha])$ is a pure as a right ideal in $R[x,x^{-1};\alpha]$ for any

elementm $(x) \in M[x, x^{-1}; \alpha]$. In this case M_R is skew quasi-Armendariz of Laurent type.

Corollary 3.5. Let α be an automorphism of a ring R and M_R be an α -compatible module. Then M_R is p.q.-Baer if and only if $M[x, x^{-1}; \alpha]_{R[x, x^{-1}; \alpha]}$ is p.q.-Baer. In this case M_R is skew quasi-Armendariz of Laurent type.

Remark 3.6. Since α -reduced modules are α -compatible modules, the Corollary 3.5 extends [2, Theorem 7(2)(a)].

Proposition 3.7. Let α be an automorphism of a ring R and M_R be an α compatible module. Then $(1) \Rightarrow (2) \Rightarrow (3)$.

(1) $r_{R[[x,x^{-1};\alpha]]}(m(x)R[[x,x^{-1};\alpha]])$ is a pure as a right ideal in $R[[x,x^{-1};\alpha]]$ for any element $m(x) \in M[[x,x^{-1};\alpha]]$.

(2) $r_R(mR)$ is pure as a right ideal in R for any element $m \in M_R$.

(3) M_R is skew quasi-Armendariz of Laurent power series type.

Corollary 3.8([2, Theorem 7(2)(b)]). Let α be an automorphism of a ring R and M_R be an α -compatible module. If $M[[x, x^{-1}; \alpha]]_{R[[x, x^{-1}; \alpha]]}$ is p.q.-Baer then M_R is p.q.-Baer.

Since quasi-Baer modules satisfy the hypothesis of Theorem 3.4 and Proposition 3.7 we have;

Corollary 3.9([9, Theorem 2.13(2)]. Let α be an automorphism of a ring R and M_R be an α -compatible module. Then M_R is quasi-Baer iff $M[x, x^{-1}; \alpha]_{R[x, x^{-1}; \alpha]}$ is quasi-Baer iff $M[[x, x^{-1}; \alpha]]_{R[[x, x^{-1}; \alpha]]}$ is quasi-Baer.

Corollary 3.10([9, Corollary 2.14]). M_R is quasi-Baer iff $M[x]_{R[x]}$ is quasi-Baer iff $M[[x]]_{R[[x]]}$ is quasi-Baer iff $M[x, x^{-1}]_{R[x, x^{-1}]}$ is quasi-Baer iff $M[[x, x^{-1}]]_{R[[x, x^{-1}]]}$ is quasi-Baer.

Corollary 3.11([4, Theorem 1.8]). *R* is quasi-Baer iff R[x] is quasi-Baer iff R[[x]] is quasi-Baer iff $R[x, x^{-1}]$ is quasi-Baer iff $R[[x, x^{-1}]]$ is quasi-Baer.

Acknowledgment. The authors would like to thank the referee for helpful comments and suggestions.

References

- [1] S. Annin, Attached Primes Under Skew Polynomial Extensions, Preprint.
- [2] M. Başer and A. Harmanci, *Reduced and p.q.-Baer Modules*, Taiwanese J. Math., 11(2007), 267-257.
- [3] M. Başer and M. T. Koşan, On Quasi-Armendariz Modules, Taiwanese J. Math., 12(2008), 573-582.

- [4] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra, 159(2001), 24-42.
- [5] G. F. Birkenmeier, J. Y. Kim, J. K. Park, *Principally quasi-Baer rings*, Comm. Algebra, 29(2001), 639-660.
- [6] G. F. Birkenmeier, J. Y. Kim, J. K. Park, On Polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J., 40(2000), 247-253.
- [7] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34(1967), 417-424.
- [8] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra, 168(2002), 45-52.
- [9] T. K. Lee and Y. Zhou, *Reduced Modules, Rings, modules, algebras and abelian groups*, Lecture Notes in Pure and Appl. Math., 236(2004), 365-377.
- [10] B. Stenstrom, Rings of Quotients, Springer(Berlin), 1975.
- [11] H. Tominaga, On s-unital rings, Math. J. Okoyama Univ., 18(1976), 117-134.