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ABSTRACT. Let 1 < p,q < oo be fixed, and let R = [r;x] be an infinite scalar matrix
such that 1 < 7, < co and sup; , 71 < 0o . Let B(lp,ly) be the set of all bounded linear
operator from [, into ;. For a fixed Banach algebra B with identity, we define a new
vector space S;,(B) of infinite matrices over B and a paranorm G on S}, (B) as follows:
let

Szfq(B) = {A : AP € ‘B(lpalq)}

1
and G(A) = ||AH|| 27, where AP = [||a;i||"/*] and M = max{l,sup, ; rjx}. The exis-
tance of Squ (B) equipped with the paranorm G(-) including its completeness are studied.
We also provide characterizations of § -dual of the paranormed space.

1. Introduction

For any vector space X, we call a function g : X — RT a paranorm on X if ¢
satisfies the following conditions:

1. g(#) = 0, where @ is the zero element in X,
x
x

. g(z) =g(—x) for all z € X,
g9z +y) < g(x) +g(y) for all 2,y € X,

2

3.

4. If {a,} is a sequence of scalars with o, — | — 0 and {z,} is a sequence of
vectors with g(x,, — x) — 0, then g(a,x, — az) — 0.

A paranormed space is a pair (X, g) of a vector space X and a paranorm g on
X. If (X,g) is a paranormed space, then the function d : X x X — R defined by
d(z,y) = g(xz —y) is a pseudometric on X, and hence it becomes a metric on the set
X/ ~ of all equivalence classes of elements of X under the equivalence relation ~
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on X defined by « ~ y < d(x,y) = 0. With this consideration, every paranormed
space can be regarded as a metric space.

Let p = {px} be a bounded sequence of real numbers such that py > 1 for all
k € N, and let M = max{1,suppy}. It is well-known that the following sequence
spaces, defined by Maddox [11] and known as the sequence spaces of Maddox (see
further in [20] and [14]):

co(p) = {{zr} ¢ |zk|P* =0 as k — oo},
cp) ={{zx}: |z = IP* -0 as k— oo forsome [eR},

o (p) = {{xk} sup < oo}7
() = {{m S s < oo},
k

are complete paranormed spaces, where the first three spaces are equipped with the
paranorm g; defined by

Pi
g1 ({z}) = sup EM R
and the last one is equipped with the paranorm g, defined by

92 ({@i}) = (ZHJHP’“) :

k

We see that when p, = p for all k, the above sequence spaces of Maddox become
the classical Banach sequence spaces

co={{zr}:|zx] =0 as k — oo},

c={{zr} : |xg| 1is convergent},

loo = {{xk} : Sl;p |zk| < oo},
and lp:{{xk}:2|xk|p<oo}.
k

Let E be a subspace of the vector space of all X -valued sequences, called an X

-valued sequence space. The « -dual and 8 -dual of E introduced by Maddox [13]
are defined as follows:

E* = {{Ak} CL(X)Y): ZAkack converges for all {zy} € E} ,
k

EF — {{Ak} CL(X,Y): ) | Aarll<oo forall {z} € E} ,
k
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where £(X,Y) is the set of all linear operator from a normed space X into a normed
space Y.

There have been several works on the notions of a -dual and S -dual defined
by Maddox mentioned above (see [6], [7], [8], and [10] for some references). Grosse-
Erdmann [6] investigated some topological and sequence structure of scalar-valued
sequence spaces of Maddox. In 2002, Suantai and Sanhan [21] provided some general
properties of 8 -dual of the vector-valued sequence spaces of Maddox, and gave
characterizations of 3 -dual of the sequence spaces [(p) when p;, > 1 for all k € N.
In 2012, Rakbud and Suantai [18] gave a general theorem on duality for a class of
Banach-valued function spaces which is a generalization of the classical sequence
space I, for 1 < p < oco. The 8 -dual of Banach-space-valued difference sequence
spaces E(A) = {{zr}: {Azi} € E} where E = {l,¢,c0} and Az = z — Tp41
for all k € N, was studied by Bhardwaj and Gupta [2].

For any Banach space X, an X -valued sequence space E is called a BK -space
if it is a Banach space and the k -th coordinate mapping py : E — X, px(x) = zy,
is continuous for all k£ € N. In 2013, Faroughi, Osgooei and Rahimi provided some
properties of a -dual and 8 -dual of a BK -space. Furthermore, the concepts of
a -dual and § -dual of a BK -space were used by the same authors in their other
works to define some new spaces (see [4], [5], and [15]).

Let 1 < p,q < co. An infinite scalar matrix A = [a;;] is said to define a linear
operator from I, into [, if for every {x} in [,, the ), ajrx) converges for all j and
the sequence Az = {)°, a;rxy} is in [;. If a matrix A defines a linear operator from
l, into I, we call the operator  — Az the linear operator defined by A. By the
uniform boundedness principle, the linear operator defined by A is bounded. Let
B(lp,14) be the set of all bounded linear operator from I, into l,. Then B(l,,l,) is
the Banach space, and it is isometrically isomorphic to the space of matrices defining
a linear operator from [, into {, endowed with the operator norm on B(l,,[,).

For any two matrices A = [a;] and C' = [¢;] of the same size, the Schur product
of A and C' is the matrix A e C' given by A e C' = [a;c ;). Schur [19] showed that
the Banach space B(l) is a commutative Banach algebra under the operator norm
and the Schur product multiplication. The Banach space B(l,,[,) under the Schur
product operation is a Banach algebra proven by Bennett [1]. Let 1 < r < oo, for a
fixed Banach algebra B with identity, Chaisuriya and Ong [3] considered the space
of matrices

Sr (B) = {A : Al € B(1,, zq)}

where A"l = [||a;1||"]. They obtained that it is a Banach algebra under the absolute

Schur r -norm defined by ||A||,.4.-= || A ;q, and also proved that S7  (C) contains
B(lp,ly) as an ideal. In 2001, Livshits, Ong and Wang [9] studied the duality
in the absolute Schur algebra S3,(C) by a way analogous to Dixmiers theorem
and Schattens theorem. After that, Rakbud and Chaisuriya [17] generalized the
results of Livshits, Ong and Wang [9] to the absolute Schur algebra S3 5;(B), where
AYe{l,:1<p<oo}U{c}, which was examined by the same authors in 2005
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(see [16]).

In this work, we extend the definition of the set S} ,(B) defined by Chaisuriya
and Ong [3] from the fixed real number r, which is greater than or equal to 1, to
a fixed bounded matrix R = [rjx] of scalars, which is greater than or equal to 1.
Hence our setting becomes

SE (B) = {A L AlR) ¢ B(zp,zq)}

where Al = [||a;x||"*]. Our goal is to define a paranorm on the vector space
S;fq(B) and investigate the properties of this paranormed space, including its exis-
tence, completeness, and duality.

2. The paranormed vector space over a Banach algebra

In this section, the two versions of the Minkowski’s inequality that Maddox
demonstrated in [12] are mentioned to achieve our results.

Theorem 2.1. Letp > 1, ay,as,--- ,an, >0 and by, ba,--- ,b, > 0. Then

<i(ak + bk)p) ’ < <ia£> ’ + (ibz> ' .
k=1 k=1

k=1

Theorem 2.2. Let 0 < p <1, ay,as,---,a, >0 and by,by,--- ,b, > 0. Then

Z(ak + bk)p < Zai —+ Zbi
= k=1 k=1

k=1

In the following theorems, we investigate some elementary properties of Sﬁq(B).

Theorem 2.3. SE (B) is a linear space.

Proof. Let A = [ajx] and B = [b;;] be matrices in S,[,}E (B). Then A% and
B ¢ B(l,,1,). Let M = max(1,sup, , rjx). For any fixed positive integers J and
K, and any fixed unit vector z = {x} € l,,, by Theorem 2.1 and Theorem 2.2,
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J K q
> [Z llaji + bjkuka']

j=1 Lk=1
r q
J a Tik. 1 Tik 1 M
< 30U (il 3 el ¥+ sl ¥ a7 )
j=1 Lk=1
N 1 q9M
K M K M
<> (Z ||ajk|’“jk|zk|> + (Z ||bjwk|xk>
j=1 k=1 k=1
_ o1 1\ gM
J K q| aM J K q| aM
< Z(Zuajkn’fwl) + Z(lebfk'r'jk'z’“'>
[7=1 \k=1 | j=1 \k=1
— 1 1y qM
J K q| q J K q| q
< Z(leamvwk') + Z(Zl ')
[7=1 \k=1 ] j=1 \k=1

qM
< (1A ()l + 1B ()l

(A [R] M
< (145 gllally + 1B gl )

[R] my ™M
< (A g+ BE )

Since J and K are arbitrary, we have

q

I(A + B) ) llaji + bji "z,

t”18

.
I
=

Mg [0e

q
lajk + bjknfw']

<.
Il
-
,_.

IA
K
N‘

qM
< (|\A[R]||p,q+||B[R]||p.,q)

This implies that ||(A+ B)flz|, < (||A[R]||p7q—|—HB[R]||p,q)M. Since A and Blf ¢
B(lp,1y), [[(A+ B)HE, , < o0. So A+ B ¢ SHt.(B). Next, we let o € B. For any
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fixed unit vector x = {x} € [,,, we obtain

oo [ oo a) 9
@area] <9 Zlaajknka']
a =1 Lk=1
1
oo [ oo q] ¢
<> ZlanMnaﬂnwwkl]
j=1 Lk=1
< o™ [ (AT 2|,

< a1 A" g

Since Al € B(l,,1,), [|(A)F||,, < co. Then oA € SF (B). By the termwise
sum and any scalar multiple of any matrices in qu(B), for any matrices A, B,C €
S} (B) and any scalars o, 5 € B,

1.

2.

7.

8.

(A4 B)IEl = (B 4 A)lH
(A+(B+C)H = ((A+B)+ ),
there exists 0 € S,[,}?q](B) such that (A + 0)[F = AR,

there is —A € S;fq(B) such that (A + (—A))F =0,

- (a(BA) = ((aB)A)H,

((a+ B)A)H = (aA+ A,
(a(A+ B)IF = (aA + aB),

since the identity 1 € B, (14)1F = AR,

This completes the proof. O

We define G : S}t (B) — R* by

G(A) = | A3

where M = max(1, sup; ;, )

Theorem 2.4. Sﬁq(B) equipped with G(-) is a paranormed space.

Proof. Tt is obvious that G(0) = 0. Since ||AF]|, ;= [[(=A) |, ., G(A) = G(—A)
for all A € Sf (B). Next, let A, B € S}t (B). To show G(A + B) < G(A) + G(B),
we use the same technique of the proof in Theorem 2.3. For any fixed positive
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integers J and K, and any unit vector x = {zx} € I,

J K q ar
> [Z llajk +bjk||”kwk|]

k=1

S

J [X i AN M a
> Z(H%kﬂjk\\vﬂkl”)

j=1 Lk=1

1
L& ik 1 ik 1\ M 1"
ST (gl 3 el ¥+ jull ¥ a7 )

j=1 Lk=

IN

A
—l— N —— —/—
-

[

K ﬁ K M
Zuag—ku”km) *(Ziwlm'>
k=1

k=1

J K a) @ J K q o
Z(Zuajknwwk) + Z(Zibﬂ'k“”k'x’“o

j=1 \k=1 =1

< {I1CAE) 137+ (B 1
<(

IN

AR, + B )
Therefore
q
1A+ B) Pz dr = {3713 Jage + byl "+
j=1 k=1
1
o0 o0 q M
- [Z lak + bjknka']
j=1 Lk=1

N

L 1\4
< (141 3+1 B9 3,

which implies that ||(A+ B) ||p < ||AlE || .+ B R]|| . Thus G(A+B) < G(A)+
G(B). Finally, we assume that {a,} is a sequence in B such that ||a, — | = 0
and {4, = [ag.z)]} is a sequence in S¥ (B) with G(A, — A) — 0 as n — oo. We
claim that {||(An)[R] H;,T?q} is bounded. Since G(A4,, — A) — 0 as n — oo, there are
T € N and K > 0 such that for all n > T,

(2.1) G(A, — A) < K.
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Because of finiteness of G(A), there is L > 0 such that G(A) < L. By (2.1), we see
that for all n > T,

1(A) 2L, = G(A,)
=G(A, — A+ A)
< G(An — A) + G(A)
<K+ L.

So we get the claim. Next, we want to show that G(ay, A, —aA) — 0asn — co. Let
1

e > 0. Since {A,} is a sequence in Sff, (B), by the boundedness of {||(An)[R] ||,§”fq},

there exists J > 0 such that

1
(A )31 < T for all n € N.

Because ||a, — || = 0 as n — oo, there is @Q € N such that for all n > Q,

€ \d
lan —all < (55)"-
By the assumption that G(A,, — A) — 0 as n — oo, there is P € N such that for all
n>P,

3

G(A, —A) < .
e =4 < el

That is

A, — AR o€
||( n ) Hpaq< 2||Oé||q

Choose N = max(Q, P) and let n > N,
[l (anAn — O‘A)[R] ”%]
= |(andn — @A, + aA, —aA)l)| i’q
< [[(enAn — @A) 3, + [[(@dn — ad)®

< (llom — af )™ | (A4,) 1

1
P

1 1 1
4 (lalMo) ™ | (A, — AR,
I
< Nlaw — afJ27 + [l ( )
2lal

-] o+

=E£.

Hence we have the theorem. O
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Theorem 2.5. Sﬁq(B) is a complete paranormed space.

Proof. Let {A, = [a;z)]} be a Cauchy sequence in S;[,IE (B). We will show that

there is A € S,[E]] (B) such that G(A, — A) — 0 as n — oo. Since {A,} is a Cauchy
sequence in S,[,z] (B),

(2.2) G(A, —Ap) =0 asm,n — oo.

For a fixed j and k, we have

%) oo q\ M
lage = afi 1™l < | D2 | D7 lage! — afi I+
j=1 Lk=1
a1
(2'3) = ”(An - Am)[R]HZ%I'

From (2.2) and (2.3), the sequence {agz)} is a Cauchy sequence in B. Since B is a
Banach algebra, there is a;; € B such that

||a§2) —ajk] >0 asn— oo

for any j and k. Let A = [a;z]. To show that A € SI[,J,E] (B). Let = {x} €, with

llzll, < 1. Since {A,} is a Cauchy sequence in S,[){:fl] (B), there exists N; € N such
that for all m,n > Ny,

(A — A) Bz 37 = G(A, — A) < 1.

For a fixed J and K, we have

K q
Zlleaﬂc - ay |W|xk|] <1 forall mn = Ni.

j=1

Thus by taking the limit on m — oo, we get

<1 foralln> N;.

K q
EZP]M?—wwM%

J=1

Consider Ay, = [aggl)} € SZ[,{{q] (B). Since (An,)f) € B(1,,1,), there is T > 0 such
that

I(Any) a3 < T.
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Therefore

1
q\ aM

< (14 - A, + An) Pz, )

K 1
. M
E llajkll"* 2y

k=1

>

Jj=1

< (A = An) P37+ 11(Aw,) Pl

<1+4T.
Then
J | K q
SIS llaelran| < (14 1)
=1 k=1
This implies that
oo | oo q\ 9
AT ]y = | YT llagell™ <@a+nM
=1 lk=1

So Al € B(l,,1,) and then A € S][,{%Q](B). Next, we will prove that G(4,, — A) = 0
asn — oco. Let ¢ > 0 and = {zx} € I, with ||z|, < 1. Since {4,} is a Cauchy
sequence in SI[,IZ] (B), there exists Ny € N such that

1(An — A) B2 = G(A, — An) < S forallm,n > Ns.
For a fixed J and K, we have

1
J q\ oM

2

=1

K

> llafy) —af
k=1

< g for all m,n > Ns.

Thus for all J and K, and n > Na, by taking the limit as m — oo, we get

J | K a\ =
, €
S llaly = ajela, <3
j=1|k=1
By taking the limits as K — oo and then J — oo,
oo | oo q % c
(A = A = | D057 hafy? —agelran) | <5,
j=1lk=1

as asserted. O
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3. Duality of matrix spaces of infinite matrices

Let E be a vector subspace of the vector space of all infinite matrices over a
Banach algebra B. We call E' a matrix space.
For any A = [a;;] € E, we define a partial sum of 3372, 377 | ajx by the finite sum

m=y
for all m,n € N.

Definition 3.1. The double series 3377 >7/% | ajy is said to converge if Y77 | ajy,
converges for all j € N, and Y272, 3777 | aj), converges.

Definition 3.2. A matrix space E is said to be normal if A = [a;;] € E whenever
llajkll < |bjk] for all j,k € N and B = [bji] € E.

Define
EY = A=la]: ZZ |ajibj|| < oo forall B=[b] € Eyp,
and
Ef = = [a;i] : i iajkbjk converges for all B = [bji] € £
j=1k=1

Theorem 3.1. Let E, Ey, E5 be matriz spaces.
1. E~ C EP.
2. If By C E,, then EJ C EY.
3. If E=E\ + Ey, then EF = EY N EJ.
4. If E is normal, then E® = EP.

Proof. By using the properties of absolutely convergent double series, the proof is
completed. O

Subsequently, we present characterizations of the 8 -dual of the paranormed
space SF, (B).

Theorem 3.2. Let R = [r;] be a bounded matriz of scalars with v, > 1 for all
J,k € N. Then
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where S?(B) = {A = [a;1] © Y252, Y02 llajrl|“FL™%* < oo for some L € N}
and Q = [gjx] is a bounded matriz of scalars such that T%k + q%k =1 for all j,k € N.

Proof.  Suppose that A € S9(B). Then Y72, 37 [lajk %" L~% < oo for
some L € N. We will show that A € SF (B). Let B = [bj] € SE (B).
Then Y272, 13702, [[bjll*ax|® < oo for any @ = (x1) € lp. This implies that
| B lp,q < oo. For any positive integer j, and any unit vector x = {x,} € [,, by
using Hoélder’s inequality, we obtain

>0 e 1 1 1
> Nagrbll < llagell L™ 7% L7k |[bj|[Jag] 7

k=1
- 1 1
00 q]k 4k oo Tik
< lea wll %" (Llakl) " 1 [Z 1B [I"* L]z
k=1
1 1
oo ‘137'19 o TJT
= |3 el (Do lZ Ilbjk””’“L'“']
Lk=1 k=1
- 1 1
0o 45k Tik
< LY lagyl|9+ Lm0 [LZIijk’“"’“Iwk]
L k=1 k=1

lZ ||bjk||w|xk'1 '

k=1

(3.1) <L [Z g L=

k=1

For each j € N, 777, |lag |9+ L-% < 3772, 332 ) [lajx||%* L~%" < oo and

e Nogllo || < 32520 SRy 1w+ ark] < ([ By, < 00, Thus 3207 ajicbjn
converges for all j € N. From (3.1), we get

o0 o0 o0 o0 o0
) SV i) SIOH TR [z nbwm]
j=1k=1 Jj=1

k=1
oo oo oo oo
<L gl @t Lm9x | 1> lbjul ™ k]

j=1k=1 j=1k=1

< 00.

Therefore 3°7°, 3777 | ajibjy, converges. Consequently, A € (S, (B ))ﬁ

Next, we assume that A € (SI, (B )) For each B = [bj;] € Sf,(B), we choose
a scalar matrix T = [t;;] such that ||t;,]| = 1 and ||a;xt;rbjk| = ajkt]kbjk for all
j.k € N. Note that [|t;xbjx| = [bjx]| for all j,k € N. By normality of S}, (B)

and B € SE (B), [tjxbx] € S, (B). Since A € (Slfq(B))B, Z}”;l e ajktinbik
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converges. Then
oo oo
Z Z ajktirbjr < 0.
j=1k=1

Because ||a;itxbjk|| = ajrtpb;, for all 5,k € N,
o0 oo

(3.2) Z Z lajkbjell = Z Z lajutinbikll =D asutixbi < oo.

j=1k=1 j=1k=1

To prove that A € S¢(B). Suppose that A ¢ S?(B). Then

Mg

oo
Z lla;i||%* L~%* = co for all L € N.
1 k=1

J

It follows that for all J, K € N,

(3.3) SN gkl L7 =00 forall L € N.

i>Jk>K

By (3.3), we let Ly = 1. Then there are ji, k1 € N such that

ST flagl oLy > 1.

J<g1 k<k:

By (3.3), we can choose Ly > Ly, j2 > j1 and kg > ki with Ly > 22 such that

S S ey > 1.

J1<j<j2 k1<k<kz

Continuing this process, we can choose sequences of positive integers {L;}, {j;} and
{kl} withl =kg <k <keo<..,1=jog<j1<jo<...and L; < Ly <...such
that L; > 2" and

> > llal|#FL; " > 1 foralli € N.
Ji—1<J<ji ki—1<k<k;

For each i € N, we let a; = }°, .o, > |%% LY where ky =

Jjo = 1. Define C = [¢;;] where ¢ji, = a; 1L 9| if ;1 < 7 < j; and
ki—1 < k < k;. For any fixed positive mtegers i and any unit vector x = {z}} € [,
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by the fact that 7xq;x = 7k + ¢jx and rjr(gx — 1) = gji for all j,k € N,

q

> ST el

Ji—1<J<ji |ki—1<k<k;

= > S a L ) a9 [y

Ji—1<i<Ji | ki—1<k<k;

Q=

< > (“;T“L;(”Hqﬂ’)||ajk|\qjk)q >

Ji—1<i<Jji ki—1<k<k; ki—1<k<k;
q
—17—-17—%k e
< E E a; L; L; 7" aje|%
Ji—1<i<Jji | ki—1<k<k;
q

_ —ay—a —Qik| . (dsk
=a; L Z Z L; " [lagwl*
Ji—1<Ji<Jji [ki—1<k<k;
—17r—-1
<a; L; a;
1
<?.

By taking the limit as ¢ — oo, we have

(o] o0 q 0o 1
Zl MWWW]SZw<w
1 i=1

j=1 Lk=

Thus C = [¢ji] € SE,(B). For each i € N,

|zk|P

> > lagell= ) S AL g

Ji—1<3<gji ki—1<k<k; Ji—1<J<ji ki—1<k<k;

Ji—1<3<Ji ki—1<k<k;
1

=a; a;
=1.
By taking the limit as ¢ — oo, we get
o0 o0 o0
DO llajeeirll =Y 1=00
j=1k=1 i=1

which contradicts (3.2). Hence A € S?(B) and the proof is finished.

D DEEED DI P

o =
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