DOI QR코드

DOI QR Code

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi (Department of Mathematics Imam Khomeini International University) ;
  • Yasaman Sadatrasul (Department of Mathematics Imam Khomeini International University)
  • Received : 2021.11.21
  • Accepted : 2022.07.28
  • Published : 2023.01.31

Abstract

Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

Keywords

Acknowledgement

The authors would like to thank the referee for a careful reading of our paper and insightful comments which saved us from several errors.

References

  1. D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42 (2014), no. 4, 1835-1843. https://doi.org/10.1080/00927872.2013.796555
  2. D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
  3. A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), no. 3, 417-429. https://doi.org/10.1017/S0004972700039344
  4. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https://doi.org/10.1016/0021-8693(88)90202-5
  5. C.-P. Lu, Unions of prime submodules, Houston J. Math. 23 (1997), no. 2, 203-213.
  6. R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103. https://doi.org/10.1080/00927879708825840
  7. S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533-3558. https://doi.org/10.1081/AGB-120004502
  8. K. Nozari and Sh. Payrovi, A generalization of the zero-divisor graph for modules, Publ. Inst. Math. (Beograd) (N.S.) 106(120) (2019), 39-46. https://doi.org/10.2298/pim1920039n
  9. K. Nozari and Sh. Payrovi, The annihilator graph for modules over commutative rings, J. Algebr. Syst. 9 (2021), no. 1, 1-12, 1 unnumbered page.
  10. Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq. 19 (2012), Special Issue no. 1, 913-920. https://doi.org/10.1142/S1005386712000776
  11. Sh. Payrovi and S. Babaei, On the 2-absorbing ideals in commutative rings, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 4, 895-900.
  12. Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform. 10 (2015), no. 1, 131-137, 167.
  13. R. Y. Sharp, Steps in Commutative Algebra, second edition, Cambridge University Press, Cambridge, 2000.
  14. S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348. https://doi.org/10.1080/00927872.2010.488675