• 제목/요약/키워드: Plate Recognition

검색결과 332건 처리시간 0.027초

Haar-like Feature 및 CLNF 알고리즘을 이용한 차량 번호판 인식 (A Vehicle License Plate Recognition Using the Haar-like Feature and CLNF Algorithm)

  • 박승현;조성원
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.15-23
    • /
    • 2016
  • 본 논문은 한국의 차량 번호판 인식에 효과적인 방법을 제안한다. 획득한 자동차 이미지로부터 Haar-Like Feature를 이용해 대략적인 번호판 후보 영역을 찾아낸 후, 랭크 필터를 사용하여 전처리를 하고 캐니 에지 추출 (Canny Edge Detecting) 알고리즘을 이용하여 연결된 사각형을 찾아 번호판을 추출한다. 추출된 번호판의 색상 정보를 이용하여 흰색/녹색 번호판을 구분하고, 각 번호판을 OTSU 이진화와 주변 전경 픽셀 전파 알고리즘인 CLNF (CCLUF with NFPP)을 통해 문자를 제외한 잡음을 제거하고 레이블링하여 숫자 및 문자 영역을 분리한다. 분리된 문자 영역은 메쉬 방법 및 세선화 후 X-Y 투영 방법으로 특징 벡터를 추출한다. 추출된 특징 벡터는 역전파 알고리즘을 사용하여 학습된 신경망을 이용하여 문자 인식을 수행한다. 제안된 차량 번호판 인식 알고리즘의 효과적 동작은 실험을 통해 확인하였다.

Emgu CV를 이용한 자동차 번호판 자동 인식 프로그램의 성능 평가에 관한 연구 (Study on Performance Evaluation of Automatic license plate recognition program using Emgu CV)

  • 김남우;허창우
    • 한국정보통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.1209-1214
    • /
    • 2016
  • 자동차 번호판 인식은 대중적인 감시 기술 중의 한 종류로서, 주어진 비디오나 영상 내 광학문자 인식을 수반한다. 번호판 인식은 자동차 번호판 국부화, 번호판의 크기, 차원, 명암대비, 밝기를 조정하는 정규화, 개별문자를 얻어내는 문자 분할, 문자를 인식하는 광학 문자 인식, 번호판의 형태, 크기, 위치 들이 연도별, 지역별로 차이가 있는 번호판들의 데이터베이스를 비교하여 구문 분석을 하는 절차를 거친다. 본 논문에서는 EmguCV를 이용하여 구현한 번호판 감지를 수행하여 위치를 찾아내고, 오픈 소스 광학 문자 인식 엔진으로 잘 알려져 있는 테서렉트 OCR을 이용하여 번호판의 문자를 인식하는 자동 인식 프로그램을 구현하고 번호판의 촬영 각도, 크기, 밝기에 대한 성능평가 결과에 관해 기술하였다.

학습 기반의 자동차 번호판 인식 시스템 (Learning-based approach for License Plate Recognition System)

  • 김종배;김갑기;김광인;박민호;김항준
    • 융합신호처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2001
  • 자동차 번호판은 조명과 카메라에 따라 영상에서 다양한 형태로 나타나고 영상내의 잡음으로 인해 알고리즘 방식으로 자동차 번호판을 인식하기가 쉽지 않다. 이러한 문제에 적합한 해결 방법으로 본 논문에서는 학습 기반의 자동차 번호판 인식 시스템을 제안한다. 제안한 시스템은 자동차 검출 모듈, 번호판 추출 모듈, 번호판 문자 인식 모듈로 구성된다 본 논문에서는 자동차 번호판 추출을 위해서 입력 영상의 잡음에 상대적인 영향이 적은 시간-지연 신경망(Time-Delay Neural Networks : TDNN)과 번호판 인식을 위해서 일반적인 신경망보다 일반화 성능이 뛰어난 서포트 벡터 머신(Support Vector Machines : SVMs)을 시스템에 적용한다. 주차장과 톨게이트에서 여러 시간대의 움직이는 자동차 영상들을 실험한 결과, 번호판 추출율은 97.5%, 번호판 문자 인식률은 97.2%의 성능을 내었고, 전체 시스템 성능은 947%이며 처리 시간은 약 1조 미만이다. 따라서 본 논문에서 제안한 시스템은 실세계에서 유용하게 적용될 수 있다.

  • PDF

형태학적 크기 분포 함수를 이용한 자동차 번호판 인식 (License Plate Recognition Using The Morphological Size Distribution Functions)

  • 차상혁;김주영;고광식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2001
  • In this paper, a new license plate recognition method using the morphological size distribution functions and color images is proposed. The proposed method consists of two steps. The first step is license plate extraction process using the plate color and step edge information in the license plate. The second step is the extraction of character feature vectors using the morphological size distribution functions and character recognition process using the MLP(multilayer perceptron). By the use of morphological size distributions functions, the error that may occur during the character region extraction process is lessened and the recognition performances are improved by the decrease of feature vector dimension.

  • PDF

딥러닝 신경망을 이용한 문자 및 단어 단위의 영문 차량 번호판 인식 (Character Level and Word Level English License Plate Recognition Using Deep-learning Neural Networks)

  • 김진호
    • 디지털산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.19-28
    • /
    • 2020
  • Vehicle license plate recognition system is not generalized in Malaysia due to the loose character layout rule and the varying number of characters as well as the mixed capital English characters and italic English words. Because the italic English word is hard to segmentation, a separate method is required to recognize in Malaysian license plate. In this paper, we propose a mixed character level and word level English license plate recognition algorithm using deep learning neural networks. The difference of Gaussian method is used to segment character and word by generating a black and white image with emphasized character strokes and separated touching characters. The proposed deep learning neural networks are implemented on the LPR system at the gate of a building in Kuala-Lumpur for the collection of database and the evaluation of algorithm performance. The evaluation results show that the proposed Malaysian English LPR can be used in commercial market with 98.01% accuracy.

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권1호
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.

Recognition of Car License Plates Using Fuzzy Clustering Algorithm

  • Cho, Jae-Hyun;Lee, Jong-Hee
    • Journal of information and communication convergence engineering
    • /
    • 제6권4호
    • /
    • pp.444-447
    • /
    • 2008
  • In this paper, we proposed the recognition system of car license plates to mitigate traffic problems. The processing sequence of the proposed algorithm is as follows. At first, a license plate segment is extracted from an acquired car image using morphological features and color information, and noises are eliminated from the extracted license plate segment using line scan algorithm and Grassfire algorithm, and then individual codes are extracted from the license plate segment using edge tracking algorithm. Finally the extracted individual codes are recognized by an FCM algorithm. In order to evaluate performance of segment extraction and code recognition of the proposed method, we used 100 car images for experiment. In the results, we could verify the proposed method is more effective and recognition performance is improved in comparison with conventional car license plate recognition methods.

딥러닝을 이용한 번호판 검출과 인식 알고리즘 (License Plate Detection and Recognition Algorithm using Deep Learning)

  • 김정환;임준홍
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.642-651
    • /
    • 2019
  • 최근 지능형 교통관제 시스템에 관한 다양한 연구가 진행되고 있는 가운데 번호판 검출과 인식 알고리즘은 가장 중요한 요소 중에 하나로 대두되고 있다. 번호판은 차량의 고유 식별값을 가지고 있기 때문이다. 기존의 차량 통행 관제 시스템은 정차를 기반으로 하고 있으며 차량의 입출입 인식 방법으로 루프 코일을 사용하고 있다. 이러한 방법은 교통 정체를 유발하고 유지보수 비용이 상승하는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 차량의 입출입 인식 방법으로 카메라 영상을 사용한다. 차량 통행 관제 시스템의 특성상 카메라가 고정되어 있다. 이에 차량이 접근하면 카메라의 배경화면이 달라진다. 이 특징을 이용하여 배경화면의 차분영상을 구하면 차량의 입출입을 인식할 수 있다. 입출입 인식 후 한국 번호판의 형태학적 특성을 이용하여 후보 이미지를 추정한다. 그리고 선형 SVM(Support Vector Machine)을 이용해서 최종 번호판을 검출한다. 검출한 번호판의 글자와 숫자 인식 방법으로는 CNN(Convolutional Neural Network) 알고리즘을 사용한다. 제안한 알고리즘은 기존의 시스템과 달리 검출 위치를 기준으로 글자와 숫자를 인식하기 때문에 번호판의 규격이 변해도 인식할 수 있다. 실험한 결과 기존의 번호판 인식 알고리즘들 보다 제안한 알고리즘이 더 높은 인식률을 가진다.

다단계 신경 회로망을 이용한 블랙박스 영상용 차량 번호판 인식 알고리즘 (A License Plate Recognition Algorithm using Multi-Stage Neural Network for Automobile Black-Box Image)

  • 김진영;허서원;임종태
    • 한국정보통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-48
    • /
    • 2018
  • 본 논문은 차량과 함께 카메라의 위치가 이동하는 블랙박스 영상을 위한 차량 번호판 인식 알고리즘을 제안한다. 카메라의 흔들림이나 빛의 변화가 많은 블랙박스 영상에서 다단계 신경 회로망을 사용하여 한글 문자의 인식률을 높여 전체적인 차량 번호판의 인식률을 높이고자 한다. 제안한 알고리즘은 차량 번호판의 한글 문자의 모음과 자음을 분리하여 인식한다. 먼저, 1차 신경 회로망으로 모음을 인식하고, 종모음('ㅏ','ㅓ')과 횡모음('ㅗ','ㅜ')로 구분한 뒤 각각의 모음군에 2차 신경 신경회로망을 이용하여 자음을 구분한다. 실제 블랙박스 영상을 획득하여 차량 번호판 인식 시뮬레이션을 수행하였으며, 그 결과 제안한 인식 시스템이 기존의 신경 회로망 기법을 사용한 차량 번호판 인식 시스템보다 높은 인식률을 보임을 확인하였다.

레이블링된 차량영상에서 번호판 영역 추출을 위한 기법 연구 (A study on license plate area extraction of labeling the vehicle images)

  • 박종대;박병호;최용석;성현경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.408-410
    • /
    • 2014
  • 본 논문에서는 자동차 번호판 인식을 위해 이진화과정을 거쳐 레이블링된 이미지에서 번호판 영역을 추출하기 위한 기법을 제안한다. 자동차 번호판 인식 시스템은 지금까지 많은 연구가 이루어지고 있으며, 번호판의 인식률도 점점 높아지고 있는 추세이다. 본 논문에서는 레이블링 이미지에서 자동차 번호판 영역을 추출하기 위한 관심 영역 설정에 대한 연구를 기술하였으며 레이블링을 위한 이미지 샘플은 오츠알고리즘을 이용하여 이진화 되었다.

  • PDF