• Title/Summary/Keyword: Operation layer

Search Result 1,096, Processing Time 0.032 seconds

Fabrication of Novel Metal Field Emitter Arrays(FEAs) Using Isotropic Silicon Etching and Oxidation

  • Oh, Chang-Woo;Lee, Chun-Gyoo;Park, Byung-Gook;Lee, Jong-Duk;Lee, Jong-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.212-216
    • /
    • 1997
  • A new metal tip fabrication process for low voltage operation is reported in this paper. The key element of the fabrication process is that isotropic silicon etching and oxidation process used in silicon tip fabrication is utilized for gate hole size reduction and gate oxide layer. A metal FEA with 625 tips was fabricated in order to demonstrate the validity of the new process and submicron gate apertures were successfully obtained from originally 1.7$\mu\textrm{m}$ diameter mask. The emission current above noise level was observed at the gate bias of 50V. The required gate voltage to obtain the anode current of 0.1${\mu}\textrm{A}$/tip was 74V and the emission current was stable above 2${\mu}\textrm{A}$/tip without any disruption. The local field conversion factor and the emitting area were calculated as 7.981${\times}$10\ulcornercm\ulcorner and 3.2${\times}$10\ulcorner$\textrm{cm}^2$/tip, respectively.

  • PDF

Fabrications and Property comparisons of LiNbO$_3$Mach-Zehnder Interferometric Optical Modulator with CPW (coplanar waveguide) Electrode (LiNbO$_3$ Mach-Zehnder 간섭기형 CPW(Coplanar waveguide) 광변조기 제작 및 특성비교)

  • Kim, Seong-Ku;Yoon, Hyung-Do;Yoon, Dae-Won;Park, Gye-Choon;Lee, JIn;Chung, Hae-Duck
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.924-930
    • /
    • 1998
  • In this study, we describe the properties of an electro-optical modulator with CPW(coplanar waveguide) electrode fabricated on $LiNvO_3$ optical waveguide, that is applicable to optical communications. These optical modulators have features that use a buffer layer to reduce velocity mismatch between microwaves and optical wave as well as employ CPW to improve impedance and propagation mode mismatch between the electrode and the external circuits. And an annealed proton exchange technique for obtaining low-loss optical waveguides and good reproducibility was employed. Taking into consideration the mentioned background, to achieve the lower driving voltage of optical modulator, we have re-disigned the longer interaction length. And their device properties are discussed also. As a result, fabricated optical modulators of good 10Gps operation and low voltage(5.6V of the halfwave lengfth voltage) at an $1.5{\mu}m$ wavelength are achived with good reproducibility.

  • PDF

A Study on the Winding Method for Reducing Joints of the High Temperature Superconducting Double Pancake Coil (고온 초전도 더블 팬케이크의 접합 수 감소를 위한 권선 방법에 관한 연구)

  • Kang, J.S.;Jo, H.C.;Jang, J.Y.;Hwang, Y.J.;Lee, J.;Lee, W.S.;Park, Y.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.30-33
    • /
    • 2012
  • A double pancake winding method is widely used to make the superconducting magnet, using high temperature superconductor (HTS) tape. In the double pancake winding method, the joints with contact resistances between double pancake coils are inevitably needed. The electrical joule heating on the contacts causes refrigerant loss during operation. And a space outside the winding, for splices and mechanical support, is more than that for its layer-wound equivalent. In this paper, a double pancake winding method in order to reduce the number of the joints was proposed. Both of the double pancake coils using the conventional winding method and the proposed winding method have been fabricated and tested to make the solution technically feasible in the double pancake winding method. Especially, critical-current tests of the fabricated double pancake coils were conducted in order to show the same performance and confirm contact resistances between double pancake coils.

Study of Nonvolatile Memory Device with SiO2/Si3N4 Stacked Tunneling Oxide (SiO2/Si3N4 터널 절연악의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰)

  • Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated for nonvolatile memory device applications. The band structure of band-gap engineered tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with the conventional tunneling $SiO_2$ barrier. The band-gap engineered tunneling barriers composed of thin $SiO_2$ and $Si_3N_4$ layers showed a lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Shin, Min-Ho;Hwang, Kyeong-Mo;Kim, Kyung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2017-2022
    • /
    • 2004
  • There are multistage preheaters in the power generation plan to improve the thermal efficiency of the plant and to prevent the components from the thermal shock. The energy source of these heaters comes from the extracted two phase fluid of working system. These two-phase fluid can cause the so-called Flow Accelerated Corrosion(FAC) in the extracting piping and the bubble plate of the heater for example, in case of point Beach Nuclear Power Plant and in the Wolsung Nuclear Power Plant. The FAC is due to the mass transport of the thin oxide layer by the convection. FAC is dependent on many parameters such as the operation temperature, void fraction, the fluid velocity and pH of fluid and so on. Therefore, in this paper velocity was calculated by FLUENT code in order to find out the root cause of the wall thinning of the feedwater heaters. It also includeed in the fluid mixing analysis model are around the number 5A feedwater heater shell including the extraction pipeline. To identify the relation between the local velocities and wall thinning, the local velocities according to the analysis results were compared with distribution of the shell wall thicknes by ultrasonic test.

  • PDF

A Study on Unit Cell Design for the Performance Enhancement in PEMFC System (PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I) -The Effects of Land/Channel Flow-field on Current Density and HFR Distributions- (고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-)

  • Ju, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.683-694
    • /
    • 2008
  • The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs.

Effect of octadecylamine concentration on adsorption on carbon steel surface

  • Liu, Canshuai;Lin, Genxian;Sun, Yun;Lu, Jundong;Fang, Jun;Yu, Chun;Chi, Lisheng;Sun, Ke
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2394-2401
    • /
    • 2020
  • Octadecylamine is an effective film-forming amine that protects carbon steel from corrosion. In the present study, the effect of octadecylamine concentration on adsorption on a carbon steel surface was investigated in anaerobic alkaline solution by using SEM/EDS, TEM and the Materials Studio simulation techniques. TEM morphology observation and EDS elemental detection determine the thicknesses of octadecylamine film on a carbon steel surface, which are confirmed by the in-situ electrochemical impedance spectroscopy measurement and resistance calculation. The Materials Studio simulation reveals the number of octadecylamine film layers at different concentrations. Results obtained in this study indicate that adsorption of octadecylamine film on carbon steel proceeds with the multi-layer adsorption mechanism.

Investigation of Water Droplet Behaviour on GDL Surface and in the Air Flow Channel of a PEM Fuel Cell under Flooding Conditions (플러딩 조건 하에서의 고분자전해질형 연료전지 GDL 표면과 공기극 유로 채널에서의 물방울 유동 특성 고찰)

  • kim, Hansang;Min, Kyoungdoug
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.476-483
    • /
    • 2012
  • Proper water management is crucial for the efficient operation of polymer electrolyte membrane (PEM) fuel cell. Especially, for automotive applications, A novel water management that can avoid both membrane dry-out and flooding is a very important task to achieve good performance and efficiency of PEM fuel cells. The aim of this study is to investigate the liquid water behavior on the gas diffusion layer (GDL) surface and in the cathode flow channel of a PEM unit fuel cell under flooding conditions. For this purpose, a transparent unit fuel cell is devised and fabricated by modifying the conventional PEM fuel cell design. The results of water droplet behavior under flooding conditions are mainly presented. The water distributions in the cathode flow channels with cell operating voltage are also compared and analyzed. Through this work, it is expected that the data obtained from this fundamental study can be effectively used to establish the basic water management strategy in terms of water removal from the flow channels in a PEM fuel cell stack.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF