<학술논문>

DOI:10.3795/KSME-B.2008.32.9.683

고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-

주 현 철* (2008년 5월 21일 접수, 2008년 7월 14일 수정, 2008년 8월 12일 심사완료)

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I)

The Effects of Land/Channel Flow-field on Current Density and HFR Distributions

Hyun Chul Ju

Key Words:Current Density Distribution(전류밀도분포), Diffusion Media(확산미디어), Gas
Channels(가스채널), Micro-porous Layer, MPL(마이크로다공층), Polymer
Electrolyte Fuel Cell, PEFC(고분자전해질형연료전지)

Abstract

The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs,

а	: 물 활동성 또는 단위체적당 촉매면적
	(m^2/m^3)
Α	: 면적 (m²)
C_P	: 비열 (kJ/kg·K)
С	: 몰농도 (mol/m ³)
D	: 확산계수 (m ² /s)
* 회	원 이하대학교 기계공학부
E-	mail : hcju@inha.ac.kr
E- TI	·mail : hcju@inha.ac.kr EL : (032)860-7312 FAX :(032)868-1716

EW: 건멤브레인의 분자량 (kg/mol) F : 패러데이상수 (96487 C/mol) : 교환전류밀도 (A/m²) io j : 전달전류밀도 (A/m³) j^i : *i* 상의 질량유속 (kg/m²·s) J: 레버렛함수 : 단위질량당 엔탈피 (kJ/kg) h : 열전도도 (W·m/K) k : 상대투과성 kr : 투과성 (m²) K

М	: 분자량 (kg/mol)	ref	: 참고값
т	: 질량분율	S	: 고체
n	: 전기화학반응의 전자 수 또는	sat	: 포화값
	확산계수의 보정 인수		
n_c	: 촉매커버리지계수	하첨자	
n_d	: 전기 삼투항력 계수	а	: 음극
Р	: 압력 (Pa)	avg	: 평균값
P_c	: 모세관압력 (Pa)	BP	: 분리판
RH	: 입구상대습도	c	: 양극
R_e	: 전기접촉저항 (mΩ·cm²)	CL	: 촉매층
R_t	: 열접촉저항 (cm ² ·K/W)	DM	: 확산미디어
R_u	: 보편가스상수, 8.314 J/(mol K)	e	: 전해질
S	: 전기화학반응의 계수 또는 액체포화도	g	: 가스상
S	: 생성항	GC	: 가스 채널
t	: 시간 (s)	H_2	: 수소
Т	: 온도 (K)	i	: 종 인덱스
u	: 유체속도 (m/s)	in	: 채널입구
U_o	: 열역학적 평형 퍼텐셜 (V)	m	: 질량식
V	: 체적 (m ³)	mem	: 멤브레인
V_{cell}	: 셀 퍼텐셜 (V)	N_2	: 질소
α	: 전달계수	O_2	: 산소
Е	: 다공도	ref	: 참고값
γ	: 어드벡션 보정 계수	t	: Ž
λ	: 멤브레인 물 함유량	S	: 고체
λ^lpha	: a 상의 상대 이동성	sat	: 포화값
Φ	: 상 퍼텐셜 (V)	W	: 물
η	: 오버퍼텐셜 (V)	Φ	: 퍼텐셜 식
θ	: 접촉각, contact angle (°)	0	: 표준상태, (온도 298.15K, 압력 101.3
μ	: 점도, viscosity (kg/m·s)		kPa)
ρ	: 밀도 (kg/m ³)		
ν	: 운동상 점도 (m ² /s)		1 서 로
σ	: 표면장력 (N/m) 또는 전자전도도 (S/m)		1. 시 는
au	: 점성전단응력 (N/m ²)		
κ	: 이온전도도 (S/m)	본	논문에서는 고분자전해질형 연료전
		(Polym	er Electrolyte Fuel Cell, PEFC)의 성능과

주

현

철

상첨자

684

e	:	전해질		
eff	:	다공성지역의	효과적인	값
mem	:	멤브레인		
g	:	가스		
1	:	액체		

-고분자전해질형 연료전지 te Fuel Cell, PEFC)의 성능과 내 구성을 향상시키기 위한 분리판 내부 가스 채널 (gas channel)의 최적화 연구를 기존에 개발된 다 차원 이상(two-phase) 수치 연료전지모델을 이용 해 수행하였다.(1~8) 본 연료전지모델은 이미 여 러 작동조건에서 측정된 실험데이터를 통해 검증 된 모델로서 본 논문에서 수행될 최적화 연구의 신뢰성을 보장해 준다.(7,8)

기존에 수행된 분리판(bipolar plate)에 대한 연 구결과를 살펴보면, PEFC의 성능이 분리판 내부 의 가스 채널 디자인에 따라 크게 변화한다는 사 실이 실험적 측정과 수치모델 시뮬레이션을 통해 증명되어 왔다. Barreras등^(9,10)은 가스 채널의 디 자인이 속도와 압력분포에 미치는 영향성을 실험 적 측정과 Navier-Stokes 보존식을 이용한 2차원 수치코드를 이용해 연구/분석 하였다. 그들은 연 료전지가 작동할 때의 수소가스유동의 레이놀즈 (Reynold)수를 계산하여, 시각적 유동측정을 용이 하게 하기위해, 수소가스대신 액체염료 액의 유 량을 산출하여 실험에 적용시켰다. 그러나 실재 로 연료전지의 성능은 양극(cathode)쪽의 속도와 압력분포에 의해 좌우되기 때문에 Barreras등^(9,10) 이 수행한 수소가스를 기본으로 한 레이놀즈 (Reynold)수 계산은 적절치 못하다. 더욱이 실재 연료전지 작동 하에서는 가스 채널의 하류방향으 로 수소나 산소가스가 전기화학반응에 의해 소모 되기 때문에, Barreras등^(9,10)에 의해 측정되고 예 측된 가스 채널 내부의 속도와 압력분포는 실재 연료전지작동 하에 예상되는 분포와는 상당한 차 이가 있을 것이다. 투과성분리판(transparent bipolar plate)을 사용하여 양극(cathode)쪽의 가스 채널내 플러딩(flooding) 현상을 시각적으로 측정한 연구 도 여러 논문을 통해 발표되었다.(11~14) 이러한 실험결과는 양극(cathode) 가스 채널의 플러딩 (flooding) 현상이 연료전지의 성능과 내구성에 큰 영향을 미친다는 것을 보여주며, 채널 플러딩 (flooding) 현상을 최소화하기위한 분리판의 가스 채널 최적화연구가 필요하다는 것을 암시한다. 분리판 채널 형상설계를 위한 수치적 연구도 수 행되었지만 이용된 수치적 모델은 수소와 산소의 전기화학반응에 의한 감소효과나 생성된 물의 응 축에 의한 플러딩(flooding) 현상을 고려한 이상 (two-phase) 연료전지 모델이 아니기 때문에 계산 된 수치결과는 실체 현상과 큰 차이가 있을 것으 로 예상된다.(15)

PEFC내 분리판 과 가스 채널의 주요 역할은 1) 전기화학반응에 필요한 수소와 산소를 원활하 게 확산미디어(diffusion media, DM)를 통해 촉매 층(catalyst layer, CL)으로 공급하면서 2) DM 와 CL의 접촉저항(contact resistance)을 최소화하여 전자 및 열 흐름을 원활히 함과 동시에 3) 전기 화학반응에 의해 생성되는 PEFC 내부의 열 과 물을 효과적으로 제어하여 물의 응축에 의한 플 러딩(flooding) 현상을 최소화함과 동시에 맴브래 인(membrane)의 건조(dehydration)현상을 방지하는 것이다. 본 논문의 목적은 이러한 세 가지 측면 을 초점으로 하여 기존에 소개된 이상(two-phase) 연료전지모델⁽¹⁻⁸⁾을 이용한 수치시뮬레이션을 수 행함으로써, PEFC의 성능과 내구성향상에 큰 영 향을 미치는 가스 채널을 최적화하기위한 기본적 인 지식을 제공하는데 있다.

2. 연료전지 수치모델

본 연구에서 이용될 다차원(multi-dimensional), 다상(multi-phase), 비등온(non-isothermal), PEFC 모 델은 기존에 Wang 과 Cheng⁽¹⁾에 의해 개발된 다 상혼합 (Multi-phase Mixture, M²) 모델을 기반으로 한다. 이러한 M² 모델은 단상(single-phase)과 이 상(two-phase)지역 사이의 경계면 (phase interface) 을 추적(tracking)할 필요가 없고 여러 가지 수치 적 복잡성을 추가적인 가정을 세우는 것 없이 간 소화할 수 있다는 장점이 있다. 그러므로 연료 전지 내부 이상(二相) 유동을 표현하고 플러딩 (flooding) 현상을 성공적으로 예측하기위해, M² 모델은 기존의 두-유체(two-fluid) 모델보다 더 우 위에 있다고 말할 수 있다. 이러한 M² 모델을 기초로 한 연료전지 CFD모델의 가정들과 지배방 정식(governing equations), 생성항(source terms)들 은 이전 논문에서 이미 자세히 소개되었기 때문 에 본 논문에서는 요점만을 간단하게 서술할 것 이다.(1~8)

2.1 지배방정식

본 모델은 질량(mass), 모멘텀(momentum), 종 (species), 전하(charge), 열에너지(thermal energy)의 보존법칙에 의해 표현될 수 있다. 지배방정식들 을 정리하면 다음과 같다.

질량 보존식:

$$\nabla \cdot (\vec{\rho u}) = S_m$$
 (1)

모멘텀 보존식:

(3)

채널

$$\frac{1}{\epsilon^2} \nabla \cdot (\overrightarrow{\rho u u}) = -\nabla p + \nabla \cdot \tau$$
(2)

다공성 미디어
$$\vec{\rho u} = -\frac{K}{\nu} \nabla p$$

종 보존식:
채널 및 다공성 미디어
$$\nabla \cdot (\gamma_i \rho m_i u) = \nabla \cdot [\rho^g D_i^{g,eff} \nabla (m_i^g)]$$
 (4)
 $+ \nabla [(m_i^g - m_i^l) j^i] + S_i$
멤브레인

$$\nabla \cdot \left(\frac{\rho^{mem}}{EW} D_w^{mem} \nabla \lambda\right) M_w - \nabla \cdot \left(n_d \frac{I}{F}\right) M_w \qquad (5)$$
$$+ \nabla \cdot \left[\frac{K^{mem}}{\nu^l} \nabla P^l\right] = 0$$

차지 보존식:
양자 전달
$$\nabla \cdot \left(k^{eff} \nabla \Phi_e\right) + S_{\Phi} = 0$$
 (6)
전자 전달

$$\nabla \cdot (\sigma^{eff} \nabla \Phi_s) - S_{\Phi} = 0 \tag{7}$$

에너지 보존식:

$$\nabla \cdot (\rho \vec{u} C_p^g T)$$
 (8)
 $= \nabla \cdot (k^{eff} \nabla T) + \nabla \cdot (h_{fg}^o \rho^l \vec{u^l}) + S_T$

지배방정식 (1)~(8)에 있는 이상(二相) 혼합물 프라퍼티(mixture property)들은 액체포화도(liquid saturation), *s* 의 함수로 표현될 수 있다.(1)

이상(二相) 혼합물 질량:

$$\rho = \rho^l \bullet s + \rho^g \bullet (1 - s) \tag{9}$$

거기서 가스혼합물밀도, ρ^g는 이상기체상태방정 식으로 표현되며 혼합물의 조성에 따라 다음과 같이 변화한다.

$$\rho^g = \left(\frac{P}{R_u T}\right) \frac{1}{\sum_i \frac{m_i^g}{M_i}} \tag{10}$$

이상(二相) 혼합물 속도:
$$\vec{\rho u} = \rho^{l} \overrightarrow{u}^{l} + \rho^{g} u^{g}$$
 (11)

철

$$k_r^l = s^4 \tag{12a}$$

$$k_r^g = (1-s)^4$$
(12b)

이상(二相) 혼합물 운동상점도:

$$v = \left(\frac{k_r^l}{v^l} + \frac{k_r^g}{v^g}\right)^{-1}$$
(13)

거기서 v^{g} 는 가스혼합물의 운동성점도 (kinematic viscosity)로서 혼합물의 조성에 따라 다 음과 같이 표현된다.(16)

$$v^{g} = \frac{\mu^{g}}{\rho^{g}} = \frac{1}{\rho^{g}} \sum_{i=1}^{n} \frac{x_{i}\mu_{i}}{\sum_{j=1}^{n} x_{j}\Phi_{ij}}$$
(14)

$$\begin{split} \varPhi_{ij} &= \frac{1}{\sqrt{8}} \left(1 + \left(\frac{\mu_i}{\mu j} \right)^{1/2} \left(\frac{M_j}{M_i} \right)^{1/4} \right) \\ \mu_i [N \bullet s/m^2] &= \begin{cases} \mu_{H_2} &= 0.21 \times 10^{-6} \, T^{0.66} \\ \mu_w &= 0.00584 \times 10^{-6} \, T^{1.29} \\ \mu_{N_2} &= 0.237 \times 10^{-6} \, T^{0.76} \\ \mu_{O_2} &= 0.246 \times 10^{-6} \, T^{0.78} \\ T \succeq Kelvin \end{split}$$

상대 이동성:
$$\lambda^{l} = \frac{k_{r}^{l}}{v^{l}}v \tag{15a}$$

$$\lambda^g = 1 - \lambda^l \tag{15b}$$

식(4)의 오른편 첫 번째 항에 있는 성분 *i*의 확 산계수 (species diffusion coefficient), D_i^g 는 가스 혼합물 내부의 이종확산(interspecies diffusion)의 합이 0이 되는 조건을 만족시키며 다음과 같이 표현된다.(16)

$$D_{i}^{g} = \frac{1 - x^{i}}{\sum_{\substack{j \neq i \\ j \neq i}}^{j - n} \frac{x_{j}}{D_{i,j}}}$$
(16)

$$\begin{split} & \overrightarrow{P}[\overrightarrow{P}] \overleftarrow{A} \\ & D_{i,j} = \frac{1.013 \, \cdot \, 10^{-7} \, \cdot \, T^{1.75}}{p \big(x_i^{1/3} + x_j^{1/3} \big)^2} \Big(\frac{1}{M_i} + \frac{1}{M_j} \Big)^{1/2} \\ & x_{H_2} = 7.07, x_w = 12.7, x_{N_2} = 17.9, x_{O_2} = 16.6 \end{split}$$

다공성미디어(Porous media)에서의 가스 확산(gas

686

diffusion)현상은 식(16)에서 표현된 것처럼 분자 들 사이의 충돌(molecular-to-molecular collision)효 과 뿐만 아니라 분자들과 벽면과의 충돌 (molecular-to-wall collision)에 의한 누슨 확산 (Knudsen diffusion) 효과에 의해 통제된다. 기체 분자운동론(kinetic theory of gases)을 근거로 하 여 누슨 확산계수(Knudsen diffusion coefficient)를 계산하면 다음과 같다.

$$D^{k_i} = \frac{2}{3} \left(\frac{8R_u T}{\mu M_i} \right)^{1/2} r_p \tag{17}$$

가스혼합물의 성분 *i*의 총 확산계수 (effective diffusion coefficient)는 이 두 효과와 함께, 다공 성미디어(Porous media)의 굴곡률(tortuosity)과 다 공도(porosity)를 고려하기위한 브러그만계수 (Bruggeman coefficient)를 사용하여 다음과 같이 표현된다.(17)

$$D_i^{g,eff} = \left[\epsilon \left(1-s\right)\right]^n \left(\frac{1}{D_i^g} + \frac{1}{D_i^k}\right)^{-1}$$
(18)

식 (4)의 오른편 두 번째 항에 있는 액체의 확산 질량유량(diffusive mass flux of liquid), \vec{j}^{\prime} 은 모세 관압력(capillary pressure), p_c 의 함수로 표현된다. (1)

$$\vec{j}^l = \rho^l \vec{u^l} - \lambda^l \rho \vec{u} = \frac{k}{\nu} \lambda^l \lambda^g \nabla P_c$$
(19)

거기서 모세관압력(capillary pressure), p_c 와 Leverett 함수, J(s)는 다음과 같다.

$$P_c = P^g - P^l = \sigma \cos \theta \left(\frac{\epsilon}{K}\right)^{\frac{1}{2}} J(s)$$
⁽²⁰⁾

친수성 (θc<90°) J(s) = 1.417(1-s) - 2.120(1-s)² = 1.263(1-s)³ (21a) 소수성 (θc>90°) J(s) = 1.417s - 2.120s² = 1.263s³ (21b)

식(4)의 왼편 항에 있는 γ_i 는 어드백션보정계수 (advection correction factor)로서 다음과 같이 정 의된다(1).

$$\gamma_i = \frac{\rho(\lambda^l m_i^l + \lambda^g m_i^g)}{(s\rho^l m_i^l + (1-s)\rho^g m_i^g)}$$
(22)

전해질내부의 물질전달 프라퍼티(property)들은 물 함유량(water content), λ의 함수로 표현된다.

전기 삼투항력 계수:(18)
$$n_d = \frac{2.5\lambda}{22}$$
(23)

양자 전도도:(18)

$$\kappa = (0.5139\lambda - 0.326) \exp\left[1268\left(\frac{1}{303} - \frac{1}{T}\right)\right]$$
 (24)

템브레인 내 물 확산계수:(19)
$$D_{w}^{mem} = \begin{cases} 3.1 \times 10^{-7} \lambda (e^{0.28\lambda} - 1) e^{-\frac{2346}{T}} & \text{for } 0 < \lambda \le 3\\ 4.17 \times 10^{-8} \lambda (1 + 161 e^{-\lambda}) e^{-\frac{2346}{T}} & \text{otherwise} \end{cases}$$
(25)

물 함유량:(18)

$$\lambda = \begin{cases} 0.043 + 17.81a - 39.85a^2 + 36.0a^3 \text{ for } 0 < a ≤ 1\\ 22 & \text{ for } a > 1 \end{cases}$$
(26)

물 활동성:(18)
$$a = \frac{C_w^g R_u T}{P_{sat}}$$
(27)

2.2 생성항 및 전기화학반응식

식 (1)~(8)의 질량(mass), 모멘텀(momentum), 종 (species), 전하(charge), 열에너지(thermal energy) 보존 식들과 일치하는 생성 항들은 각각, S_m , S_i , S_{ϕ} , S_T 로 다음과 같이 표현된다.

촉매층 내 질량 식의 생성항:
$$S_m = \sum_i S_i + M_w \nabla \cdot \left(D_w^{mem} \frac{\rho^{mem}}{EW} \nabla \lambda \right) \quad (28)$$

촉매층 내 종 식의 생성항: 물

$$S_i = M_i \left[-\nabla \cdot \left(\frac{n_d}{F}I\right) - \frac{s_i j}{nF} \right]$$
⁽²⁹⁾

다른 종들

$$S_i = -M_i \frac{s_i j}{nF} \tag{30}$$

촉매층 내 차지 식의 생성항:
$$S_{\Phi} = j$$
 (31)

주 현 철

에너지 식의 생성항: 촉매층 내

$$S_T = j(\eta + T\frac{dU_o}{dT}) + \frac{i_e^2}{\kappa^{eff}}$$
(32)

맴브래인 내

$$S_T = \frac{i_e^2}{\kappa^{eff}} \tag{33}$$

이들 생성 항들은 음극(anode)와 양극(cathode) 쪽의 전기화학반응들에 의해 결정된다. 먼저 전 기화학반응식을 표현하는 기본패턴은 다음과 같 이 표현된다.

$$\sum_{k} s_i M_i^z = n e^- \tag{34}$$

 $M_i \equiv$ chemical formula of species, i

 $s_i \equiv$ stoichiometry coefficient

 $n \equiv$ number of electron transferred

음극(anode)와 양극(cathode)쪽의 전기화학반응 식들은,

음극: 수소산화반응 (HOR)
$$H_2 - 2H^+ = 2e^-$$
 (35)
양극: 산소환원반응 (ORR)

$$2H_2O - O_2 - 4H^+ = 4e^- \tag{36}$$

전기화학반응속도는 버틀러볼머(Butler Volmer) 식에 의해 다음과 같이 표현된다.

음극 촉매층 내 수소산화반응 (HOR)

$$j = (1-s)^{n_c} a a_{0,a}^{ref} \left(\frac{C_{H_2}}{C_{H_2 ref}} \right)^{1/2} \left(\frac{\alpha_a + \alpha_c}{R_u T} F \eta \right)$$
(37)

양극 촉매층 내 산소환원반응 (ORR)

$$j = -\left(1-s\right)^{n_c} a \varepsilon_{o,c}^{ref} \left(\frac{C_{o_2}}{C_{o_2 ref}}\right)^{3/4} \exp\left(-\frac{\alpha_c}{R_u T} F \eta\right)$$
(38)

거기서 (1-*s*)ⁿ는 물이 전기화학 촉매를 덮음으로 서 일어나는 CL 플러딩(flooding) 현상을 고려하 기 위해 식에 첨가되었다.

음극(anode)와 양극(cathode) 전극의 표면 과전 압 (surface overpotential)은 다음과 같이 정리되며, 음극 촉매층 내 수소산화반응 (HOR):

 $\eta = \phi_s - \phi_e$ (39) 양극 촉매층 내 산소환원반응 (ORR):

$$\eta = \phi_s - \phi_e - U_o \tag{40}$$

거기서 U_0 (thermodynamic equilibrium potential)은 아래와 같이 표현된다.(20)

$$U_0 = 1.23 - 0.9 \times 10^{-3} (T - 298.15) \quad (41)$$

ORR 반응식의 온도와의 상관관계는 아레니우 스식(Arrhenius' equation) 형태로 표현될 수 있 다.(21)

$$a_{0,c}^{ref}(T) = a_{0,c}^{ref}(353K) \cdot \exp\left[-\frac{E_a}{R_u}\left(\frac{1}{T} - \frac{1}{353.15}\right)\right]$$
(42)

지금까지 기술된 연료전지 CFD 모델은 상업용 해석 팩키지인 STAR-CD의 user-coding capability 를 이용해 개발되었다. 본 모델의 수렴조건은 각 수치 셀(cell)의 레지듀얼 (residual) 최댓값이 10⁶ 이하 또는 수소, 산소, 물 등, 종 불균형 (species imbalance) 값이 1% 이하로 떨어질 때 이며, 대부 분의 시뮬레에션 경우 대략 1000 이터레이션 (iteration) 정도에서 상기 조건을 만족하며 수렴하 였다. 그 밖에 계산 속도나 격자생성(grid generation) 등에 관련된 수치시뮬레이션 세부정보 는 이전에 편찬된 논문에서 자세히 기술되고 있 다.(22)

3. 결과 및 고찰

3.1 모델 시뮬레이션

본 연구에서는 연료전지의 성능과 내구성 향상 을 위한 가스 채널 최적화를 위해 랜드(land)와 치수와 채널(channel)의 랜드/채널 비율 (land/channel ratio)을 수치 연구의 입력(input) 파 라미터(parameter)로 사용하였다. 본 연구에서는 사용된 PEFC 셀 프라퍼티(property)들과 작동조건 들은 Table 1에 나열되어 있으며 PEFC 기하학적 형상과 치수(dimension)는 Fig. 1에 나타나 있다. Table 1에서 선택된 연료전지의 작동조건들(작동 압력, 온도 등)은 자동차용 연료전지의 정상상태 (steady-state)에서의 일반적인 값이며 1.5 A/cm²의 고 전류밀도 운전조건은 채널형상이 연료전지의 성능에 미칠 수 있는 효과를 최대화하기 위해 선 택 되었다. Table 1에서 연료전지의 작동온도가 70°C로 가정되었기 때문에 70°C의 등온 경계 조 건(isothermal boundary condition)이 Fig. 1의 음극 (anode)과 양극(cathode) 분리판 끝에 적용되었다.

688

Description	Value
Thermal conductivity for CL, k_{CL}	1.0 W/m·K
Thermal conductivity for MPL, k_{MPL}	1.0 W/m·K
Thru-plane thermal conductivity for DM, $k_{DM, ithru}$	1.0 W/m·K
In-plane thermal conductivity for DM, $k_{DM_{in}}$	5.0 W/m·K
Thermal conductivity for BP, k_{BP}	10.0 W/m·K
Thermal conductivity for membrane, k_{mem}	1.0 W/m·K
Thermal contact resistance between BP and DM, $R_{t,BP}$	$0.75 \text{ cm}^2 \cdot \text{K/W}$
Electronic contact resistance between BP and DM. R_{eBP}	5.3 m Ω ·cm ²
Contact angle of DM and MPL. Θ	110°
Permeability of anode and cathode DM K _{DM}	$1.0 \cdot 10^{-12} \text{m}^2$
Permeability of MP. K _{MPL}	$1.0 \cdot 10^{-13} \text{m}^2$
Porosity of anode and cathode DM, EDM	0.6
Porosity of MPL, ε_{MPL}	0.5
Relative entry pressure for MPL, P_{entry}	5000 Pa
Hydraulic permeability of membrane, K_{mem}	$5.0 \cdot 10^{-20} \text{m}^2$
Anode and Cathode inlet pressure,	1.5 atm
Operating current density, I	1.5 A/cm^2
Operating temperature, T	70°C
Anode/cathode inlet humidification at 70°C, RH_{a}/RH_{c}	100%/100%
	1

Table 1 Cell properties, and operating conditions

본 연구에서 채택된 셀에서 주목해야 할 점은 Fig. 1에서 보이는 것처럼 음극(anode) 쪽의 랜드 (land)의 폭이 양극(cathode) 쪽 보다 훨씬 넓다는 것이다. 또한 양극(cathode) 쪽에는 플러딩 (flooding)을 최소화하기 위한 MPL이 CL와 DM 사이에 놓여 있는 반면 음극(anode)쪽에는 MPL이 고려되지 않았다. 특히 본 연구에서는 전자접촉 저항 (electronic contact resistance, R_e)과 열 접촉저 항(thermal contact resistance, R_t)이 분리판과 DM 사이 그리고 DM와 CL (anode)사이 또는 MPL과 CL사이 (cathode) 에서 각각 고려되었음을 Fig. 1 을 통해 알 수 있다. 거기서 주목해야 할 점은

Fig. 1 Dimension of the PEFC geometry where the electronic contact resistances are applied at the DM/CL interfaces and bipolar plate/DM interfaces(23)

DM과 CL 사이 (anode) 또는 MPL과 CL 사이 (cathode) 에서 R_e 와 R_t 의 값이 압축압력 (compression pressure)이 셀 조립 (cell assembling) 과정 중 실제로 적용된 차이에 따라서 in-plane 방향으로 변화한다는 사실이다. 즉 채널(channel) 중간에서는 가장 적은 압축압력(compression pressure)이 적용되기 때문에 그에 따른 접촉저항 은 가장 크게 되는 반면, 랜드(land) 쪽과 접한 DM/CL(음극 쪽) 또는 DM/MPL (양극 쪽) 접촉면 에서는 압축압력(compression pressure)이 효과적으 로 적용되었기 때문에 접촉저항이 적게 유지될 것이다. 이러한 접촉저항의 분포는 PEFC의 성능 및 전류분포, 온도분포 등에 큰 영향을 줄 것으 로 예상된다. 본 연구에서는 채널(channel) 쪽과 접한 DM/CL(음극 쪽) 또는 DM/MPL (양극 쪽) 접촉면에서의 접촉저항이 식 (43)과 같이 랜드 (land) 쪽에 비하여 지수함수형태로 증가한다고 가정하였다.

 $R_{chan} = R_{land} \cdot e^{3.5x} \tag{43}$

거기서 x는 랜드/채널(land/channel)의 가장자리 (edge)부터 채널(channel)방향으로의 거리를 나타 낸다. 이러한 가정에 의한 전자 및 열 접촉저항 을 in-plane 방향으로 나타내면 Fig. 2와 같다. 한 편, Fig.1에서 보이는 것처럼 분리판의 랜드(land) 와 DM 사이의 전자 및 열 접촉저항도 본 연구에 서 고려되었다. Table 1에 있는 *R_{e,BP}* 와 *R_{t,BP}* 값은 in-plane 방향으로 균일하다는 가정아래 분리판의

Fig. 2 Electronic contact resistance (a) and thermal contact resistance (b) variations at the MPL/CL interface (cathode) and DM/CL interface (anode) along the in-plane direction

랜드(land) 와 DM의 접촉면에 적용되었다. 단 랜 드(land)를 통과하는 전자 혹은 열 유속은 랜드/채 널 비율(land/channel ratio)에 비례하므로 실재 적 용된 값은 다음과 같이 보정되었다.

$$R_{e,BP}^{eff} = \frac{land \ width}{channel \ width + land \ width} R_{e,BP}$$
(44)
$$R_{t,BP}^{eff} = \frac{land \ width}{channel \ width + land \ width} R_{t,BP}$$
(45)

거기서 랜드폭(land width)과 채널폭(channel width)은 양극(cathode)쪽의 값들을 기본으로 한다.

3.2 가스 채널 최적화 연구결과

본 논문에서 다루어질 가스 채널의 최적화연구 에서는 Fig. 1에서 보이는 것처럼 in-plane방향으 로의 채널 폭(channel width)과 랜드 폭(land width)에 변화를 주며 서론에서 언급된 세 가지 측면의 영향성에 대해 분석해나갈 것이다.

Fig. 3에서는 채널(channel) 과 랜드(land) 폭이 각 각 0.5mm와 0.25mm일 때의 in-plane방향으로의 전 류밀도(current density)와 HFR(High Frequency Resistance)의 분포를 나타낸다. Fig. 3에서 보이는 것처럼 맴브래인(membrane) 내 전류밀도는 AGC (anode gas channel) /CGC(cathode gas channel)이 접 한 쪽부터 랜드(land)를 거쳐 CGC이 접한 쪽까지 계속적으로 증가하는 경향을 보이는 반면 HFR은 반대의 분포를 나타낸다. 그 이유는 Fig. 1와 Fig. 통해 알 수 있듯이 접촉저항의 분포가 2를 AGC/CGC부터 CGC까지 서서히 감소하기 때문이다.

Fig. 4에서는 Fig. 3와 비교될 때 랜드(land) 폭은 0.25 mm로 유지되는 반면 채널(channel) 폭은 1.0 mm로 증가시킨 경우의 전류밀도 및 HFR 분포곡선 을 보여준다. 먼저 전류밀도의 변화는 AGC/CGC부 터 CGC까지 서서히 증가하는 경향을 보이고 HFR은 전류밀도와 반대로 감소하는 경향을 보여준다. 이러 한 경향은 채널(channel) 폭이 0.5 mm인 경우(Fig. 3) 와 같음을 비교를 통해 알 수 있다. 하지만 변화의 폭은 Fig. 3과 비교될 때 채널(channel) 두께의 증가 에 의해 AGC/CGC 근처에서 변화폭이 크게 증가 (HFR)와 감소(전류밀도)함을 Fig. 4를 통해서 알 수 있다. 이러한 경향을 보이는 주된 원인은 AGC/CGC 쪽의 MPL 또는 DM와 CL 사이의 접촉저항 값이 채널(channel) 폭의 증가로 인해 상당히 커지기 때문 이다. 이러한 경향은 채널(channel) 폭이 1.5 mm로 더욱 증가하는 Fig. 5의 경우에 더 확연히 드러나게 되어 전류밀도와 HFR의 in-plane 방향으로의 불균일 성(non-uniformity)는 더욱더 크게 증가하게 된다.

Fig. 6에서는 채널(channel) 폭이 0.5 mm, 그리고 랜드(land) 폭도 0.5 mm인 경우의 전류밀도와 HFR 분포를 나타낸다. 랜드(land) 폭이 0.25 mm인 경우 들 (Figs. 3~5)과 비교할 때, Fig. 6 에서 보이는 두 드러진 특징은 랜드/채널 가장자리(land//channel edge) 로부터 랜드(land) 중간 부근까지에서 전류밀 도가 감소하는 경향을 보여준다는 사실이다. 이러 한 이유는 랜드(land) 두께가 0.5 mm 부터는 산소의 고갈(depletion) 현상이 랜분포에 나타나기 때문이다.

Fig. 3 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC (Land width=0.25 mm, Channel width=0.5 mm, *I*=1.5 A/cm²)

Fig. 4 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC (Land width=0.25 mm, Channel width=1.0 mm, *I*=1.5 A/cm²)

Fig. 7 에서는 랜드(land)폭은 0.5 mm로 유지되는 반면 채널(channel) 폭은 다시 1.0 mm로 증가한 경우 를 보여준다. 전류밀도와 HFR의 in-plane 방향으로 의 불균일성(non-uniformity)은 접촉저항의 영향으로 인해 크게 증가하는 경향을 다시 한 번 볼 수 있다.

마지막으로 Fig. 8 에서는 랜드(land)의 폭이 1.0 mm, 채널(channel) 의 폭이 1.5 mm인 경우의 전류밀도와 HFR의 분포곡선을 보여준다. 채널 (channel)과 랜드(land) 폭의 증가로 인해 전류밀도

Fig. 5 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC (Land width=0.25 mm, Channel width=1.5 mm, *I*=1.5 A/cm²)

Fig. 6 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC(Land width=0.5 mm, Channel width=0.5 mm, *I*=1.5 A/cm²)

와 HFR의 불균일성(non-uniformity)는 모델 시뮬 레이션 경우(case)들 중 가장 큰 것으로 나타났다. 본 연구에서 고려된 경우들의 1.5 A/cm² 작동전 류밀도(operating current density) 조건에서의 성능 (cell voltage, V_{cell})이 Table 2에 요약되어 있다. 랜 드(land)와 채널(channel) 폭이 가장 조밀한 경우 (land width=0.25mm, channel width=0.5mm)가 가장 균일한(uniform)한 전류밀도 및 HFR 분포(Fig. 3) 를 가질 뿐만 아니라 성능 면에서도 가장 우수하 며(V_{cell}=0.630 V), 랜드(land)와 채널(channel)폭이

Fig. 7 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC (Land width=05 mm, Channel width=1.0 mm, *I*=1.5 A/cm²)

Fig. 8 Current density and HFR distributions along the in-plane direction where the 0 mm in the x axes starts from the center of GC (Land width=1.0 mm, Channel width=1.5 mm, *I*=1.5 A/cm²)

가장 넓은 경우(land width=1.0mm, channel width=1.5mm)가 가장 불균일한 전류밀도 및 HFR 분포(Fig. 8)와 더불어 가장 낮은 성능(V_{cell}=0.558 V)을 가짐을 알 수 있다. 그러므로 멤브레인 (membrane) 내 전류밀도분포는 접촉저항 분포와 산소의 고갈(depletion) 현상에 의해 변하며, 이러 한 접촉저항분포 및 산소의 고갈(depletion) 현상 을 최소화하기 위해선 가스 채널의 랜드(land)와 채널(channel)의 폭이 조밀해야 한다는 사실이 본 최적화연구를 통해 도출될 수 있는 결론이다.

Table 2 Cell voltages for all simulation ca

Land width	Channel width	Cell voltage, V _{cell}
0.25 mm	0.5 mm	0.630 V
0.25 mm	1.0 mm	0.620 V
0.25 mm	1.5 mm	0.608 V
0.5 mm	0.5 mm	0.617 V
0.5 mm	1.0 mm	0.613 V
0.5 mm	1.5 mm	0.603 V
10 mm	1.5 mm	0.558 V

4. 결 론

본 연구에서는 기존에 개발된 다차원 (multi-dimensional), 다상(multi-phase), 비등온(nonisothermal), PEFC 모델을 이용해 가스 채널의 랜 드(land)와 채널(channel)의 폭과 비율(ratio)을 변화 시켜가며 연료전지의 성능과 내구성 향상을 위해 필요한 균일한(uniform)한 전류밀도와 HFR 분포 곡선을 얻기 위한 최적화연구를 수행하였다. 이 러한 연구를 통해 얻어진 결론을 정리하면 다음 과 같다.

(1) 양극(cathode) 쪽에서의 MPL과 CL 사이, 혹 은 음극(anode) 쪽에서의 CL 와 DM 사이의 접촉 저항은 채널(channel)의 폭이 커질 때 채널 방향으로 크게 증가하여 불균일성 (channel) (non-uniformity)이 큰 전류밀도와 HFR 분포를 초 래하였다. 이러한 결과로부터 랜드(land) 와 채널 (channel) 폭이 큰 가스 채널 디자인은 연료전지 의 성능향상을 위해서는 바람직하지 않으며 이러 한 디자인이 필요로 한 경우에는 접촉저항을 최 소화 할 수 있는 고도의 연료전지 셀 조립 (assembling) 기술이 필요할 것이다.

(2) 가스 채널의 랜드(land)의 폭이 커질 경우에 는 산소고갈(oxygen depletion) 현상이 심해져 불 균일(non-uniform)한 전류밀도와 HFR 분포를 초래 한다는 사실이 모델 시뮬레이션 결과를 통해 예 측되었다. 이러한 사실은 접촉저항을 줄이기 위 랜드(land) 폭을 늘린다면 산소고갈(oxygen 해 depletion) 효과가 커지므로 불균일성(nonuniformity)이 다시 커질 수 있다는 것을 알려 준 다. 이러한 이유 때문에 접촉저항과 산소고갈 (oxygen depletion) 효과를 고려하여, 전류밀도와 HFR의 불균일성(non-uniformity)이 최소화할 수 있는 방향으로 가스 채널 최적화가 이루어 져야 한다는 사실이 본 연구의 수치결과들을 통해 알

수 있는 사실 이다.

(3) 본 연구의 결과를 통해 랜드(land) 와 채널 (channel) 폭이 큰 가스 채널 디자인이 접촉저항 과 산소고갈(oxygen depletion) 효과를 고려할 때 바람직하지 않은 것으로 판명되었지만, 실재로 채널 내 유체의 압력강하나 채널 플러딩(flooding) 현상은 반대로 채널(channel)폭이 큰 경우에 줄어 들 것으로 예상할 수 있다. 그러므로 분리판의 가스 채널 최적화 과정은 위의 모든 효과들 (접 촉저항, 산소고갈, 압력강하, 채널 플러딩)을 고려 해서 진행되어야할 것이다.

본 논문의 Part I은 가스 채널 치수가 전류밀도 와 HFR분포에 미치는 영향성에 초점을 맞추어 분석되었고, 다음에 출판될 Part II에서는 가스 채 널 치수가 열 및 이상 물(two-phase water) 전달 그리고 플러딩(flooding) 현상에 미치는 영향성에 대해 연구/분석될 예정이다.

참고문헌

- Wang, C. Y. and Cheng, P., 1996, "A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous media-I. Model Development." *Int. J. Heat Mass Transfer*, Vol. 39, pp. 3607~3618.
- (2) Ju, H., Meng, H., and Wang, C. Y., 2005, "A Single-phase, Non-isothermal Model for PEM Fuel Cells," *Int. J. Heat Mass Transfer*, Vol. 48, pp. 1303~1315.
- (3) Ju, H., Luo, G., and Wang, C. Y., 2007, "Probing Liquid Water Saturation in Diffusion Media of Polymer Electrolyte Fuel Cells," *J. Electrochem. Soc.*, Vol. 154(2), pp. B218~B228.
- (4) Luo, G., Ju, H., and Wang, C. Y., 2007, "Prediction of Dry-wet-dry Transition in Polymer Electrolyte Fuel Cells," *J. Electrochem. Soc.*, Vol. 154(3), pp. B316~B321.
- (5) Wang, Y. and Wang, C. Y., 2006. "A Nonisothermal, Two-phase Model for Polymer Electrolyte Fuel Cells," *J. Electrochem. Soc.*, Vol. 153, No. 6, pp. A1193~A1200.
- (6) Ju, H., Ph.D. Thesis. 2006 August, "Coupled Heat and Water Management in Polymer Electrolyte Fuel Cells," The Pennsylvania State University, University

Park.

- (7) Ju H. and Wang, C. Y., 2004, "Experimental Validation of a PEM Fuel Cell Model by Current Distribution Data," *J. Electrochem. Soc.*, 151, A1954~A1960.
- (8) Ju, H., Wang, C. Y., Cleghorn, S. and Beuscher, U., 2005, "Non-isothermal Modeling of Polymer Electrolyte Fuel Cells Part I: Experimental Validation," *J. Electrochem. Soc.*, 152(8), A1645-A1653.
- (9) Barreras, F., L. Lozano, L. Valiňo, C. Martin, and Pascau, A., 2005, "Flow Distribution in a Bipolar Plate of a Proton Exchange Membrane Fuel Cell: Experiments and Numerical Simulation Studies," *J. Power Sources*, 144, pp. 54~66.
- (10) Barreras, F., L. Lozano, L. Valiňo, and C. Martin, 2008, "Fluid Dynamics Performance of Different Bipolar Plates Part I. Velocity and Pressure Field," *J. Power Sources*, 175, pp. 841~850.
- (11) Tüber, K., D. Pocza, and C. Hebling, 2003, "Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell," *J. Power Sources*, 124, 403.
- (12) Yang, X. G., F. Y. Zhang, A. L. Lubawy, and C. Y. Wang, 2004, "Visualization of Liquid Water Transport in a PEFC," *Electrochem. Solid-State Lett.*, 7(11), A408.
- (13) Liu, X., H. Guo, and C. Ma, 2006, "Water Flooding and Two-phase Flow in Cathode Channels of Proton Exchange Membrane Fuel Cells," *J. Power Sources*, 156, 267.
- (14) Zhang, F. Y., X. G. Yang, and C. Y. Wang, 2006, "Liquid Water Removal from a Polymer Electrolyte Fuel Cell," *J. Electrochem. Soc.*, 153(2), A225.
- (15) Park, J., H. Jung, 2002, "Flow-Field Analysis for Designing Bipolar Plate Patterns in a Proton Exchange Membrane Fuel Cell," *Transactions of the KSME(B)*, Vol. 26, No. 9, pp. 1201~1208.
- (16) Bird, R. B., Stewart, W.E. and Lightfood, E. N., 1960. *Transport Phenamena*. John Wiley & Sons. New York.
- (17) Meredith, R. E. and Tobias, C. W., 1962, "Conduction in Heterogeneous Systems, Advances in

Electrochemistry and Electrochemical Enginee- ring 2. C. W. Tobias," ed., Interscience Publishers. New York.

- (18) Springer, T. E., Zawodinski, T. A. and Gottesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. Electrochem. Soc., 136, pp. 2334~2341.
- (19) Motupally, S., A. J. Becker, and J. W. Weidner, 2000, "Diffusion of Water in Nafion 115 Membranes," *J. Electrochem. Soc.*, 147, 3171.
- (20) Berger, C., 1968, Handbook of Fuel Cell Technology, Prentice-Hall.
- (21) Parthasarathy, A., S. Srinivasan, and Appleby,

A.J., 1992, "Temperature Dependence of the Electrode Kinetics of Oxygen Reduction at the Platinum/Nafion[□] Interface-A Microelectrode Investigation," *J. Electrochem. Soc.*, 139, pp. 2530~2537.

- (22) Meng, H. and Wang, C. Y. 2004 "Large-scale Simulation of Polymer Electrolyte Fuel Cells by Parallel Computing," *Chemical Engineering Science*, Vol. 59, pp. A3331~A3343.
- (23) Goebel, S. G., Miller, D., Beutel, M. J., 2005, "Flow File Plate Arrangement for a Fuel Cell," U.S. Patent Application 2005/0064263 A1. USA.