DOI QR코드

DOI QR Code

Effect of octadecylamine concentration on adsorption on carbon steel surface

  • Liu, Canshuai (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Lin, Genxian (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Sun, Yun (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Lu, Jundong (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Fang, Jun (Suzhou Nuclear Power Research Institute Co., Ltd.) ;
  • Yu, Chun (Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Chi, Lisheng (Fujian Key Laboratory of Fuel and Materials in Clean Nuclear Energy System, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences) ;
  • Sun, Ke (Daya Bay Nuclear Power Operation and Management Co., Ltd)
  • Received : 2020.02.04
  • Accepted : 2020.03.25
  • Published : 2020.10.25

Abstract

Octadecylamine is an effective film-forming amine that protects carbon steel from corrosion. In the present study, the effect of octadecylamine concentration on adsorption on a carbon steel surface was investigated in anaerobic alkaline solution by using SEM/EDS, TEM and the Materials Studio simulation techniques. TEM morphology observation and EDS elemental detection determine the thicknesses of octadecylamine film on a carbon steel surface, which are confirmed by the in-situ electrochemical impedance spectroscopy measurement and resistance calculation. The Materials Studio simulation reveals the number of octadecylamine film layers at different concentrations. Results obtained in this study indicate that adsorption of octadecylamine film on carbon steel proceeds with the multi-layer adsorption mechanism.

Keywords

References

  1. C.W. Turner, AECL Nucl. Rev. 2 (2013) 61-88. https://doi.org/10.12943/ANR.2013.00007
  2. I. Betova, M. Bojinov, T. Saario, Film-Forming Amines in Steam/Water Cycles-Structure, Properties, and Influence on Corrosion and Deposition Processes, Research Report, 2014. VTT-R-03234-14.
  3. S. Choi, K. Fruzzetti, M. Caravaggio, S. Shulder, C. Marks, J. Reinders, A. Mechler, M. Kreider, Filming Amines: a pathway to wider use in PWRs paper number: 60, in: 20th NPC International Conference, 2016.
  4. B.N. Khodyrev, A.L. Krichevtsov, A.A. Sokolyuk, Therm. Eng. 57 (2010) 553-559. https://doi.org/10.1134/S0040601510070037
  5. S. Delaunay, Effect of Film-Forming Amine Injection on Corrosion Products Behavior in Feedwater System Conditions, Materials Ageing Institute, 2017, 6125-4501-2017-01308-EN.
  6. W.J. Kuang, J.A. Mathews, D.D. Macdonald, Electrochim. Acta 127 (2014) 79-85. https://doi.org/10.1016/j.electacta.2014.02.011
  7. S. Choi, Pressurized Water Reactor Secondary Side Filming Amine Application: Scoping Assessment, 2016. Technical report, 3002008187.
  8. A. Drexler, S. Weiss, N. Caris, C. Stiepani, AREVA's Toolbox for Long Term Best Performance and Reliable Operation of Nuclear Steam Generators, Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia, 2015. Anupuram.
  9. G.J. Verib, Power Plant Chem. 13 (2011) 262-269.
  10. F.X. Mao, C.F. Dong, D.D. Macdonald, Corrosion Sci. 98 (2015) 192-200. https://doi.org/10.1016/j.corsci.2015.05.022
  11. K.G. Patil, V. Santhanam, S.K. Biswas, K.G. Ayappa, J. Phys. Chem. C 114 (2010) 3549-3559. https://doi.org/10.1021/jp9086255
  12. R.F.M. Lobo, M.A. Pereira-Da-Silva, M. Raposo, R.M. Faria, O.N. OliveiraJr, Nanotechnology 10 (1999) 389-393. https://doi.org/10.1088/0957-4484/10/4/305
  13. Y. Sun, S. Wu, D.H. Xia, L. Xu, J.Q. Wang, S.Z. Song, H.Q. Fan, Z.M. Gao, J. Zhang, Z. Wu, W.B. Hua, Corrosion Sci. 140 (2018) 260-271. https://doi.org/10.1016/j.corsci.2018.05.038
  14. H.H. Ge, G.D. Zhou, Q.Q. Liao, Y.G. Lee, B.H. Loo, Appl. Surf. Sci. 156 (2000) 39-46. https://doi.org/10.1016/S0169-4332(99)00288-3
  15. J. Baux, N. Causs, J. Esvan, S. Delaunay, J. Tireau, M. Roy, D. You, N. Pebere, Electrochim. Acta 283 (2018) 699-707. https://doi.org/10.1016/j.electacta.2018.06.189
  16. N. Ochoa, G. Baril, F. Moran, N. Pebere, J. Appl. Electrochem. 32 (2002) 497-504. https://doi.org/10.1023/A:1016500722497
  17. N. Ochoa, F. Moran, N. Pebere, J. Appl. Electrochem. 34 (2004) 487-493. https://doi.org/10.1023/B:JACH.0000021702.49827.11
  18. N. Ochoa, F. Moran, N. Pebere, B. Tribollet, Corrosion Sci. 47 (2005) 593-604. https://doi.org/10.1016/j.corsci.2004.07.021
  19. Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, Corrosion Sci. 53 (2011) 3623-3635. https://doi.org/10.1016/j.corsci.2011.07.012
  20. Z.M. Zhang, J.Q. Wang, E.H. Han, W. Ke, Nucl. Eng. Des. 241 (2011) 4944-4952. https://doi.org/10.1016/j.nucengdes.2011.09.025
  21. C.S. Liu, J.Q. Wang, Z.M. Zhang, E.H. Han, W. Liu, D. Liang, Z.T. Yang, Acta Metall. Sin. 32 (2019) 506-516. https://doi.org/10.1007/s40195-018-0760-2
  22. T. Barres, B. Tribollet, O. Stephan, H. Montigaud, M. Boinet, Y. Cohin, Electrochim. Acta 227 (2017) 1-6. https://doi.org/10.1016/j.electacta.2017.01.008
  23. Y. Wang, S. Song, J. Wang, Y. Behnamian, L. Xu, H. Fan, D.H. Xia, J. Electrochem. Soc. 166 (2019) C332-C344, 2019. https://doi.org/10.1149/2.1291912jes
  24. D.H. Xia, J.Q. Wang, Z.B. Qin, Z.M. Gao, Z. Wu, J.H. Wang, L.X. Yang, W.B. Hua, J.L. Luo, Mater. Chem. Phys. 233 (2019) 133-140. https://doi.org/10.1016/j.matchemphys.2019.05.056
  25. D.H. Xia, Y. Behnamian, J.L. Luo, J. Electrochem. Soc. 166 (2019) C49-C64. https://doi.org/10.1149/2.0531902jes
  26. W.J. Kuang, J.A. Mathews, M.L. Taylor, D.D. Macdonald, Electrochim. Acta 136 (2014) 493-503. https://doi.org/10.1016/j.electacta.2014.05.146
  27. M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, M.E. Orazem, C.M. Sanchez-Sanchez, B. Tribollet, V. Vivier, Electrochim. Acta 201 (2016) 340-347. https://doi.org/10.1016/j.electacta.2015.12.173
  28. S. Chakri, I. Frateur, M.E. Orazem, E.M.M. Sutter, T.T.M. Tran, B. Tribollet, V. Vivier, Eletrochimica. Acta 246 (2017) 924-930. https://doi.org/10.1016/j.electacta.2017.06.096
  29. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer, New York, 2018.
  30. C.B. Carter, D.B. Williams, Transmission Electron Microscopy, Springer, Switzerland, 2016.
  31. G.J. Brug, A.L.G. Van Den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176 (1984) 275-295. https://doi.org/10.1016/S0022-0728(84)80324-1
  32. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem. Soc. 157 (2010) C452-C457. https://doi.org/10.1149/1.3499564
  33. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, J. Electrochem. Soc. 157 (2010) C458-C463. https://doi.org/10.1149/1.3499565
  34. W. Xu, K. Daub, X. Zhang, J.J. Noel, D.W. Shoesmith, J.C. Wren, Electrochim. Acta 54 (2009) 5727-5738. https://doi.org/10.1016/j.electacta.2009.05.020
  35. K. Daub, X. Zhang, J.J. Noel, J.C. Wren, Electrochim. Acta 55 (2010) 2767-2776. https://doi.org/10.1016/j.electacta.2009.12.028
  36. P. Bommersbach, C. Alemany-Dumont, J.P. Millet, B. Normand, Electrochim. Acta 51 (2005) 1076-1084. https://doi.org/10.1016/j.electacta.2005.06.001
  37. M.A. Amin, S.S. Abd Ei-Rehim, E.E.F. Ei-Sherbini, Rady S. Bayoumi, Electrochim. Acta 52 (2007) 3588-3600. https://doi.org/10.1016/j.electacta.2006.10.019
  38. M.A.M. Ei-Haddad, A.B. Radwan, M.H. Sliem, W.M.I. Hassan, A.M. Abdullah, Sci. Rep. 9 (2019) 3695-3709. https://doi.org/10.1038/s41598-019-40149-w
  39. W.Y. Shi, C. Ding, J.L. Yan, X.Y. Han, Z.M. Lv, W. Lei, M.Z. Xia, F.Y. Wang, Desalination 291 (2012) 8-14. https://doi.org/10.1016/j.desal.2012.01.019
  40. D.N. Theodorou, U.W. Suter, Macromolecules 18 (1985) 1467-1478. https://doi.org/10.1021/ma00149a018
  41. D.W. Heermann, Computer Simulation Methods in Theoretical Physics, Springer, Berlin Heidelberg New York London Paris Tokyo Hong Kong, 1990.