DOI QR코드

DOI QR Code

Study of Nonvolatile Memory Device with SiO2/Si3N4 Stacked Tunneling Oxide

SiO2/Si3N4 터널 절연악의 적층구조에 따른 비휘발성 메모리 소자의 특성 고찰

  • 조원주 (광운대학교 전자재료공학과)
  • Published : 2009.01.01

Abstract

The electrical characteristics of band-gap engineered tunneling barriers consisting of thin $SiO_2$ and $Si_3N_4$ dielectric layers were investigated for nonvolatile memory device applications. The band structure of band-gap engineered tunneling barriers was studied and the effectiveness of these tunneling barriers was compared with the conventional tunneling $SiO_2$ barrier. The band-gap engineered tunneling barriers composed of thin $SiO_2$ and $Si_3N_4$ layers showed a lower operation voltage, faster speed and longer retention time than the conventional $SiO_2$ tunnel barrier. The thickness of each $SiO_2$ and $Si_3N_4$ layer was optimized to improve the performance of non-volatile memory.

Keywords

References

  1. K. Naruke, S. Taguchi, and M Wada, 'Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness', IEDM Tech. Dig., p. 424, 1988 https://doi.org/10.1109/IEDM.1988.32846
  2. G. Atwood, 'Future directions and challenges of ETox flash memoryscaling', IEEE Trans. Device Mater. Rel., Vol. 4, No. 3, p. 301, 2004 https://doi.org/10.1109/TDMR.2004.837117
  3. J. Kim, J. D. Choi, W. C Shin, D. J. Kim, H. S. Kim, K. M. Maeng, S. T. Ahn, and O. H. Kwon, 'Scaling down of tunnel oxynitride in NAND flash memory: oxynitride selection and reliabilities', Reliability Physics Symposium 1997, p. 12, 1997 https://doi.org/10.1109/RELPHY.1997.584220
  4. K. K. Likharev, 'Layered tunnel barriers for nonvolatile memory devices', Appl. Phys. Lett., Vol. 73, No. 15, p. 2137, 1998 https://doi.org/10.1063/1.122402
  5. E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. J. Wortman, 'Modeled tunnel currents for high dielectric constant dielectrics', IEEE Trans.Electron Devices Vol. 45, No. 6, p. 1350, 1998 https://doi.org/10.1109/16.678572
  6. G. D. Wilk, R. M. Wallace, and J. M. Anthony, 'High-k gate dielectrics: Current status and materials properties considerations', J. Appl. Phys., Vol. 89, No. 10, p. 5243, 2001 https://doi.org/10.1063/1.1361065
  7. 정종완, 조원주, '고성능 플래시 메모리를 위한 터널 베리어 엔지니어링', 전기전자재료학회지, 21권, 5호, p. 42, 2008
  8. Internatioanl Technolgy Roadmap for Semiconductors, 2007 Edition. [Online]. Avaiable: http://public.itrs.net
  9. B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt, and K. De Meyer, 'VARIOT: A novel multilayer tunnel barrier concept for low-voltage nonvolatile memory devices', IEEE Electron Devices Lett., Vol. 24, No. 2, p. 99, 2003 https://doi.org/10.1109/LED.2002.807694
  10. M. Specht, M. Stadele, and F. Hofmann, 'Simulation of high-K tunnel barriers for nonvolatile floating gate memories', ESSDERC 2002, p. 599, 2002
  11. J. Buckley, B. De Salvo, G. Molas, M. Gely, and S. Deleonibus, 'Experimental and theoretical study of layered tunnel barriers for nonvolatile memories', ESSDERC 2005, p. 509, 2005 https://doi.org/10.1109/ESSDER.2005.1546696
  12. P. H. Yeh, L. J. Chena, P. T. Liu, D. Y. Wang, and T. C. Chang, 'Metal nanocrystals as charge storage nodes for nonvolatile memory devices', Electrochimica Acta, Vol. 52, p. 2920, 2007 https://doi.org/10.1016/j.electacta.2006.09.006