• Title/Summary/Keyword: Nonlinear functional differential equation

Search Result 44, Processing Time 0.02 seconds

EXISTENCE AND APPROXIMATE SOLUTION FOR THE FRACTIONAL VOLTERRA FREDHOLM INTEGRO-DIFFERENTIAL EQUATION INVOLVING ς-HILFER FRACTIONAL DERIVATIVE

  • Awad T. Alabdala;Alan jalal abdulqader;Saleh S. Redhwan;Tariq A. Aljaaidi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.989-1004
    • /
    • 2023
  • In this paper, we are motivated to evaluate and investigate the necessary conditions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer fractional derivative. The given problem is converted into an equivalent fixed point problem by introducing an operator whose fixed points coincide with the solutions to the problem at hand. The existence and uniqueness results for the given problem are derived by applying Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate the convergence of approximated solutions to the same problem using the modified Adomian decomposition method. An example is provided to illustrate our findings.

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

FIXED POINT THEOREMS FOR THE MODIFIED SIMULATION FUNCTION AND APPLICATIONS TO FRACTIONAL ECONOMICS SYSTEMS

  • Nashine, Hemant Kumar;Ibrahim, Rabha W.;Cho, Yeol Je;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.137-155
    • /
    • 2021
  • In this paper, first, we prove some common fixed point theorems for the generalized contraction condition under newly defined modified simulation function which generalize and include many results in the literature. Second, we give two numerical examples with graphical representations for verifying the proposed results. Third, we discuss and study a set of common fixed point theorems for two pairs (finite families) of self-mappings. Finally, we give some applications of our results in discrete and functional fractional economic systems.

CONTROLLABILITY FOR TRAJECTORIES OF SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kang, Yong Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.63-79
    • /
    • 2018
  • In this paper, we first consider the existence and regularity of solutions of the semilinear control system under natural assumptions such as the local Lipschtiz continuity of nonlinear term. Thereafter, we will also establish the approximate controllability for the equation when the corresponding linear system is approximately controllable.

INVESTIGATION OF A NEW COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS IN FRAME OF HILFER-HADAMARD

  • Ali Abd Alaziz Najem Al-Sudani;Ibrahem Abdulrasool hammood Al-Nuh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.501-515
    • /
    • 2024
  • The primary focus of this paper is to thoroughly examine and analyze a coupled system by a Hilfer-Hadamard-type fractional differential equation with coupled boundary conditions. To achieve this, we introduce an operator that possesses fixed points corresponding to the solutions of the problem, effectively transforming the given system into an equivalent fixed-point problem. The necessary conditions for the existence and uniqueness of solutions for the system are established using Banach's fixed point theorem and Schaefer's fixed point theorem. An illustrate example is presented to demonstrate the effectiveness of the developed controllability results.

A NOVEL FIXED POINT ITERATION PROCEDURE FOR APPROXIMATING THE SOLUTION OF IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • James Abah Ugboh;Joseph Oboyi;Austine Efut Ofem;Godwin Chidi Ugwunnadi;Ojen Kumar Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.841-865
    • /
    • 2024
  • In this research, we propose a new efficient iterative method for fixed point problems of generalized α-nonexpansive mappings. We show the weak and strong convergence analysis of the proposed method under some mild assumptions on the control parameters. We consider the application of the new method to some real world problems such as convex minimization problems, image restoration problems and impulsive fractional differential equations. We carryout a numerical experiment to show the computational advantage of our method over some well known existing methods.

ANALYTICAL AND APPROXIMATE SOLUTIONS FOR GENERALIZED FRACTIONAL QUADRATIC INTEGRAL EQUATION

  • Abood, Basim N.;Redhwan, Saleh S.;Abdo, Mohammed S.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.497-512
    • /
    • 2021
  • In this paper, we study the analytical and approximate solutions for a fractional quadratic integral equation involving Katugampola fractional integral operator. The existence and uniqueness results obtained in the given arrangement are not only new but also yield some new particular results corresponding to special values of the parameters 𝜌 and ϑ. The main results are obtained by using Banach fixed point theorem, Picard Method, and Adomian decomposition method. An illustrative example is given to justify the main results.

SOLVABILITY FOR A CLASS OF FDES WITH SOME (e1, e2, θ)-NONLOCAL ANTI PERIODIC CONDITIONS AND ANOTHER CLASS OF KDV BURGER EQUATION TYPE

  • Iqbal Jebril;Yazid GOUARI;Mahdi RAKAH;Zoubir DAHMANI
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1017-1034
    • /
    • 2023
  • In this paper, we work two different problems. First, we investigate a new class of fractional differential equations involving Caputo sequential derivative with some (e1, e2, θ)-periodic conditions. The existence and uniqueness of solutions are proven. The stability of solutions is also discussed. The second part includes studying traveling wave solutions of a conformable fractional Korteweg-de Vries-Burger (KdV Burger) equation through the Tanh method. Graphs of some of the waves are plotted and discussed, and a conclusion follows.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

PARAMETRIC EQUATIONS OF SPECIAL CURVES LYING ON A REGULAR SURFACE IN EUCLIDEAN 3-SPACE

  • El Haimi, Abderrazzak;Chahdi, Amina Ouazzani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.225-236
    • /
    • 2021
  • In this paper, we determine position vector of a line of curvature of a regular surface which is relatively normal-slant helix, with respect to Darboux frame. Then, a vector differential equation is established by means Darboux formulas, in the case of the geodesic torsion is vanishes. In terms of solution, we determine the parametric representation of a line of curvature which is relatively normal-slant helix, with respect to standard frame in Euclidean 3-space. Thereafter, we apply this result to find the position vector of a line of curvature which is isophote curve.