References
- A. T. Alabdala, B. N. Abood, S. S. Redhwan and S. Alkhatib, Caputo delayed fractional differential equations by Sadik transform, Nonlinear Funct. Anal. Appl, 28(2) (2023), 439-448.
- B.N. Abood, S.S. Redhwan and M.S. Abdo, Analytical and approximate solutions for generalized fractional quadratic integral equation, Nonlinear Funct. Anal. Appl, 26(3) (2021), 497-512.
- B.N. Abood, S.S. Redhwan, O. Bazighifan and K. Nonlaopon, Investigating a generalized fractional quadratic integral equation, Fractal and Fractional, 6(5)(2022), 251.
- G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135(2) (1988), 501-544. https://doi.org/10.1016/0022-247X(88)90170-9
- G. Adomian and R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl., 91(1) (1983), 39-46. https://doi.org/10.1016/0022-247X(83)90090-2
- G. Adomian and D. Sarafyan, Numerical solution of differential equations in the deterministie limit of stochastic theory, Appl. Math. Comput., 8 (1981), 111-119. https://doi.org/10.1016/0096-3003(81)90002-3
- R.P. Agarwal, M. Benchohra and S.A. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(3) (2010), 973-1033. https://doi.org/10.1007/s10440-008-9356-6
- A.H. Ahmed, M.S. Abdo and K.B. Ghadle. Existence and uniqueness results for Caputo fractional integro-differential equations, J. Kor. Soc. Indust. Appl. Math., 22(3) (2018), 163-177.
- M.A. Almalahi, O. Bazighifan, S.K. Panchal, S.S. Askar and G.I. Oros, Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators, Fractal and Fractional, 5(4) (2021), 178.
- M.A. Almalahi, S.K. Panchal, K. Aldwoah and M. Lotayif, On the Explicit Solution of ψ-Hilfer Integro-Differential Nonlocal Cauchy Problem, Progr. Fract. Differ. Appl., 9(1) (2023), 65-77. https://doi.org/10.18576/pfda/090104
- S.Y. Al-Mayyahi, M.S. Abdo, S.S. Redhwan and B.N. Abood, Boundary value problems for a coupled system of Hadamard-type fractional differential equations, IAENG Int. J. Appl. Math., 51(1) (2021), 1-10.
- R. Almeida, A Gronwall inequality for a general Caputo fractional operator, https://doi.org/10.48550/arXiv.1705.10079, 2017.
- U. Arshad, M. Sultana, A.H. Ali, O. Bazighifan, A.A. Al-moneef and K. Nonlaopon, Numerical Solutions of Fractional-Order Electrical RLC Circuit Equations via Three Numerical Techniques, Mathematics, 10(17) (2022), 3071.
- I. M. Batiha, N. Alamarat, S. Alshorm, O. Y. Ababneh and S. Moman, Semi-analytical solution to a coupled linear incommensurate system of fractional differential equations, Nonlinear Funct. Anal. Appl, 28(2) (2023), 449-471. https://doi.org/10.1109/ICIT58056.2023.10225807
- D.V. Bayram and A. Dascpmoglu, A method for fractional Volterra integro-differential equations by Laguerre polynomials, Adv. Differ. Equ., 2018(1) (2018), 466.
- C. da Vanterler, J. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005
- P. Das, S. Rana and H. Ramos, Homotopy perturbation method for solving Caputo-type fractional order Volterra-Fredholm integro-differential equations, Comput. Math. Meth., 1(5) (2019), e1047.
- P. Das, S. Rana and H. Ramos, A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis, Int. J. Comput. Math., (2019), 1-21.
- J.S. Duan, R. Rach, D. Baleanu and A.M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc., 3(2) (2012), 73-99.
- K.M. Furati, M.D. Kassim and N.E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626. https://doi.org/10.1016/j.camwa.2012.01.009
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys., 284 (2002), 399-408. https://doi.org/10.1016/S0301-0104(02)00670-5
- H.N.A. Ismail, I.K. Youssef and T.M. Rageh, Modification on Adomian decomposition method for solving fractional Riccati differential equation, Int. Adv. Research J. Sci. Eng. Tec., 4(12) (2017), 1-11.
- M.B. Jeelani, A.S. Alnahdi, M.A. Almalahi, M.S. Abdo, H.A. Wahash and N.H. Alharthi, Qualitative Analyses of Fractional Integrodifferential Equations with a Variable Order under the Mittag-Leffler Power Law, J. Funct. Spaces, 2022.
- A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 204, Elsevier Science, Amsterdam, 2006.
- N. Limpanukorn, P. Sa Ngiamsunthorn, D. Songsanga and A. Suechoei, On the stability of differential systems involving ψ-Hilfer fractional derivative, Nonlinear Funct. Anal. Appl, 27(3) (2022), 513-532.
- R. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. Appl. Math. Mech., 4(2) (2008), 87-94.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego 1999.
- R. Rach, On the Adomian decomposition method and comparisons with Picard's method, J. Math. Anal. Appl., 128(2) (1987), 480-483. https://doi.org/10.1016/0022-247X(87)90199-5
- S. Redhwan and S.L. Shaikh, Implicit fractional differential equation with nonlocal integral-multipoint boundary conditions in the frame of Hilfer fractional derivative, J. Math. Anal. Mode., 2(1) (2021), 62-71. https://doi.org/10.48185/jmam.v2i1.176
- S.S. Redhwan, S.L. Shaikh, M.S. Abdo, W. Shatanawi, K. Abodayeh, M.A. Almalahi and T. Aljaaidi, Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Mathematics, 7(2) (2022), 1856-1872. https://doi.org/10.3934/math.2022107
- S.S. Redhwan, A.M. Suad, S. Shaikh and A. Mohammed, A coupled non-separated system of Hadamard-type fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 6(1) (2021), 33-44. https://doi.org/10.31197/atnaa.925365
- S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Switzerland, 1993.
- D.R. Smart, Fixed Point Theorems, Cambridge Univ. Press 66, 1980.
- J.V.D.C. Sousa and E.C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, (2017), https://doi.org/10.48550/arXiv.1709.03634.
- J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005
- A.M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102(1) (1999), 77-86. https://doi.org/10.1016/S0096-3003(98)10024-3
- E.A.A. Ziada, Solution of coupled system of Cauchy problem of nonlocal differential equations, Electronic J. Math. Anal. Appl., 8(2) (2020), 220-230. https://doi.org/10.21608/ejmaa.2020.312851