References
- A. Al-Hussein, Maximum principle for controlled stochastic evolution equations, Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1447-1464.
- K. J. Astrom, Introduction to Stochastic Control Theory, Mathematics in Science and Engineering, Vol. 70, Academic Press, New York, 1970.
- J.-P. Aubin, Un theoreme de compacite, C. R. Acad. Sci. Paris 256 (1963), 5042-5044.
- A. Chadha and S. Nandan Bora, Approximate controllability of impulsive neutral stochastic differential equations driven by Poisson jumps, J. Dyn. Control. Syst. (2017), 1-28. DOI 10.1007/s10883-016-9348-1.
- R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.
-
G. Di Blasio, K. Kunisch, and E. Sinestrari,
$L^2$ -regularity for parabolic partial integro-differential equations with delay in the highest-order derivatives, J. Math. Anal. Appl. 102 (1984), no. 1, 38-57. https://doi.org/10.1016/0022-247X(84)90200-2 - I. Eliazar and J. Klafter, On the nonlinear modeling of shot noise, Proc. Natl. Acad. Sci. USA 102 (2005), no. 39, 13779-13782. https://doi.org/10.1073/pnas.0506816102
- J.-M. Jeong and H.-J. Hwang, Optimal control problems for semilinear retarded functional differential equations, J. Optim. Theory Appl. 167 (2015), no. 1, 49-67. https://doi.org/10.1007/s10957-015-0726-8
- J. M. Jeong, Y. C. Kwun, and J. Y. Park, Approximate controllability for semilinear retarded functional-differential equations, J. Dynam. Control Systems 5 (1999), no. 3, 329-346. https://doi.org/10.1023/A:1021714500075
- X. J. Li and J. M. Yong, Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications, Birkhauser Boston, Inc., Boston, MA, 1995.
- X. Mao, Stochastic Differential Equations and Applications, second edition, Horwood Publishing Limited, Chichester, 2008.
- F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces, SIAM J. Control Optim. 47 (2008), no. 1, 251-300. https://doi.org/10.1137/050632725
- Q. Meng and P. Shi, Stochastic optimal control for backward stochastic partial differential systems, J. Math. Anal. Appl. 402 (2013), no. 2, 758-771. https://doi.org/10.1016/j.jmaa.2013.01.053
- S. Peng, Backward stochastic differential equations and applications to optimal control, Appl. Math. Optim. 27 (1993), no. 2, 125-144. https://doi.org/10.1007/BF01195978
- C. Rajivganthi and P. Muthukumar, Almost automorphic solutions for fractional stochastic differential equations and its optimal control, Optimal Control Appl. Methods 37 (2016), no. 4, 663-681. https://doi.org/10.1002/oca.2186
- C. Rajivganthi, K. Thiagu, P. Muthukumar, and P. Balasubramaniam, Existence of solutions and approximate controllability of impulsive fractional stochastic differential systems with infinite delay and Poisson jumps, Appl. Math. 60 (2015), no. 4, 395-419. https://doi.org/10.1007/s10492-015-0103-9
- M. Rockner, R. Zhu, and X. Zhu, Existence and uniqueness of solutions to stochastic functional differential equations in infinite dimensions, Nonlinear Anal. 125 (2015), 358-397. https://doi.org/10.1016/j.na.2015.05.019
- J. Shi, Necessary conditions for optimal control of forward-backward stochastic systems with random jumps, Int. J. Stoch. Anal. 2012 (2012), Art. ID 258674, 50 pp.
- J. Shi, Optimal control for stochastic differential delay equations with Poisson jumps and applications, Random Oper. Stoch. Equ. 23 (2015), no. 1, 39-52.
- A. Shukla, U. Arora, and N. Sukavanam, Approximate controllability of retarded semilinear stochastic system with non local conditions, J. Appl. Math. Comput. 49 (2015), no. 1-2, 513-527. https://doi.org/10.1007/s12190-014-0851-9
-
B. Song, Y. Zhang, J. H. Park, and H. Huang,
$L_2-L-\infty}$ filtering for stochastic systems driven by Poisson processes and Wiener processes, Appl. Math. Comput. 276 (2016), 407-416. - P. Tamilalagan and P. Balasubramaniam, The solvability and optimal controls for fractional stochastic differential equations driven by Poisson jumps via resolvent operators, Appl. Math. Optim. (2016), 1-20. DOI:10.1007/s00245-016-9380-2.
- V. M. Ungureanu, Optimal control for infinite dimensional stochastic differential equations with infinite Markov jumps and multiplicative noise, J. Math. Anal. Appl. 417 (2014), no. 2, 694-718. https://doi.org/10.1016/j.jmaa.2014.03.052
- Y. Xu and H. Wang, Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control, Abstr. Appl. Anal. 2013, Art. ID 948782, 7 pp.
- Y. Xu, H. Wang, D. Liu, and H. Huang, Sliding mode control of a class of fractional chaotic systems in the presence of parameter perturbations, J. Vib. Control 21 (2015), no. 3, 435-448. https://doi.org/10.1177/1077546313486283
- J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM J. Control Optim. 48 (2010), no. 6, 4119-4156. https://doi.org/10.1137/090763287
- J. Yong and X. Y. Zhou, Stochastic controls, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
- Z. Yu, The stochastic maximum principle for optimal control problems of delay systems involving continuous and impulse controls, Automatica J. IFAC 48 (2012), no. 10, 2420-2432. https://doi.org/10.1016/j.automatica.2012.06.082
- J. Zhou, Infinite horizon optimal control problem for stochastic evolution equations in Hilbert spaces, J. Dyn. Control Syst. 22 (2016), no. 3, 531-554. https://doi.org/10.1007/s10883-015-9307-2
- J. Zhou and B. Liu, Optimal control problem for stochastic evolution equations in Hilbert spaces, Internat. J. Control 83 (2010), no. 9, 1771-1784. https://doi.org/10.1080/00207179.2010.495161