• 제목/요약/키워드: stochastic maximum principle

검색결과 9건 처리시간 0.019초

OPTIMAL CONTROL ON SEMILINEAR RETARDED STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN BY POISSON JUMPS IN HILBERT SPACE

  • Nagarajan, Durga;Palanisamy, Muthukumar
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.479-497
    • /
    • 2018
  • This paper deals with an optimal control on semilinear stochastic functional differential equations with Poisson jumps in a Hilbert space. The existence of an optimal control is derived by the solution of proposed system which satisfies weakly sequentially compactness. Also the stochastic maximum principle for the optimal control is established by using spike variation technique of optimal control with a convex control domain in Hilbert space. Finally, an application of retarded type stochastic Burgers equation is given to illustrate the theory.

관측자의 선형확률연속시스템에의 적용 (An application of observer to the linear stochastic contimuous systems)

  • 고명삼;홍석교
    • 전기의세계
    • /
    • 제24권5호
    • /
    • pp.103-106
    • /
    • 1975
  • This Paper deals with an applicatoin of Luenberger Observer to the Linear Stochastic Systems. The basic technique is the use of a matrix version of the Maximum Principle of Pontryagin coupled with the use of gradient matrices to derive the gain matix for minimum error covariance. The optimal observer which is derived turns out to be identical to the well-known Kalman-Bucy Filter.

  • PDF

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • 대한수학회보
    • /
    • 제41권2호
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

INFINITE HORIZON OPTIMAL CONTROL PROBLEMS OF BACKWARD STOCHASTIC DELAY DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Liang, Hong;Zhou, Jianjun
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.311-330
    • /
    • 2020
  • This paper investigates infinite horizon optimal control problems driven by a class of backward stochastic delay differential equations in Hilbert spaces. We first obtain a prior estimate for the solutions of state equations, by which the existence and uniqueness results are proved. Meanwhile, necessary and sufficient conditions for optimal control problems on an infinite horizon are derived by introducing time-advanced stochastic differential equations as adjoint equations. Finally, the theoretical results are applied to a linear-quadratic control problem.

THE APPLICATION OF STOCHASTIC ANALYSIS TO POPULATION GENETICS MODEL

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.455-460
    • /
    • 2007
  • In allelic model $X=(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)=f(p(t))-{\int}_0^t\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we try to apply diffusion processes for countable-allelic model in population genetic model and we can define a new diffusion operator $L^*$. Since the martingale problem for this operator $L^*$ is related to diffusion processes, we can define a integral which is combined with operator $L^*$ and a bilinar form $<{\cdot},{\cdot}>$. We can find properties for this integral using maximum principle.

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing;Zhu, Zhiyuan;Liu, Fang;Li, Haoxin;Jiang, Zhengwu
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.127-136
    • /
    • 2020
  • There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

양해 추계학적 동적계획기법에 의한 저수지 운영률 개발 (Development of Reservoir Operating Rule Using Explicit Stochastic Dynamic Programming)

  • 고석구;이광만;이한구
    • 한국수자원학회논문집
    • /
    • 제30권3호
    • /
    • pp.269-278
    • /
    • 1997
  • 저수지 운영의 기초가 되는 운영률은 대부분 과거기록 유입량중 최대 혹은 최소의 극한치 자료를 이용하거나 평균치 자료를 이용하여 도출하기 때문에 실제 운영에서 발생할 수 있는 불확실성에 대처한 기대편익 산정이나 운영방안 수립에는 적절히 이용할 수 없다. 또한 지금까지 개발된 대부분의 운영률은 유입량을 포함하여 모든 운영변수를 이미 알고 있다는 확정론적 방법에 기초하고 있어 유입량의 불확실성을 반영하지 못하는 단점이 있다. 이를 개선할 수 있는 방법으로 추계학 분석기법에 의한 운영률을 개발할 수 있는데 이는 저수지 상태방정식의 구성요소인 유입량의 추계학적 특성을 시계열상에서 이산화된 천이확률로 처리하여 모형에 적용할 수 있다. 확정론적 방법에 의한 저수지 운영방안을 개선시키기 위하여 추계학적 방법에 의한 저수지 운영률을 개발하였다. 본 연구에서는 이와같은 방법론에 따른 양해 추계학적 동적계획기법을 이용하여 충주 저수지 시스템의 최적 운영 방안을 마련하였다. 개발된 운영률을 홍수기를 제외하고는 Lag-1 Markov 모형의 기본가정을 충실히 따르고 있어 저수지 운영률로의 이용이 가능하며, 운영단계의 유입량을 적절히 예측할 수 없는 현실에서 전단계의 유입량과 적용단계의 저류량만을 이용하는 저수지 운영률의 개발이 가능하다.

  • PDF

Study on the splitting failure of the surrounding rock of underground caverns

  • Li, Xiaojing;Chen, Han-Mei;Sun, Yanbo;Zhou, Rongxin;Wang, Lige
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.499-507
    • /
    • 2018
  • In this paper splitting failure on rock pillars among the underground caverns has been studied. The damaged structure is considered to be thin plates and then the failure mechanism of rock pillars has been studied consequently. The critical load of buckling failure of the rock plate has also been obtained. Furthermore, with a combination of the basic energy dissipation principle, generalized formulas in estimating the number of splitting cracks and in predicting the maximum deflection of thin plate have been proposed. The splitting criterion and the mechanical model proposed in this paper are finally verified with numerical calculations in FLAC 3D.