References
- R.P. Agarwal, A.A. Lupulescu and D. O'Regan, Lp-solutions for a class of fractional integral equations, J. Integral Equat. Appl., 29 (2017), 251-270. https://doi.org/10.1216/JIE-2017-29-2-251
- R. Arab, R. Allahyari and A. Haghighi, Existence of solutions of infinite systems of integral equations in Frechet spaces, Inter. J. Nonlinear Anal. Appl., 7 (2016), 205-216.
- D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969) 458-465. https://doi.org/10.1090/S0002-9939-1969-0239559-9
- M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), 73-85.
- C. Cattani, H.M. Srivastava and X.J. Yang, Fractional Dynamics, Walter de Gruyter GmbH, Berlin/Boston (2015).
- L.B. Ciric, A generalization of Banach contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273. https://doi.org/10.1090/S0002-9939-1974-0356011-2
- D. Dukic, Z. Kadelburg and S. Radenovic, Fixed points of Geraghty-type mappings in various generalized metric spaces, Abst. Appl. Anal., 2011, Art. ID 561245, 13 pp.
- M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608. https://doi.org/10.1090/S0002-9939-1973-0334176-5
- B. Hazarika, R. Arab and H.K. Nashine, Applications of measure of non-compactness and modified simulation function for solvability of nonlinear functional integral equations, Filomat, 33:17 (2019), 5427-5439. https://doi.org/10.2298/fil1917427h
- R.W. Ibrahim and M. Darus, Weakly solutions for fractional integral equation: Volterra type, Inter. J. Modern Theoretical Physics, 2 (2013), 42-52.
- G. Jungck, Compatible mappings and common fixed points, Inter. J. Math. Math. Sci., (1986), 771-779.
- F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189-1194. https://doi.org/10.2298/FIL1506189K
- S. Radenovic, Z. Kadelburg, D. Jandrlic and A. Jandrlic, Some results on weak contraction maps, Bull. Iranian Math. Soc., 38 (2012), 625-645.
- A. Gasull and A. Geyer, Traveling surface waves of moderate amplitude in shallow water, Nonlinear Anal. 102 (2014), 105-119. https://doi.org/10.1016/j.na.2014.02.005
- M. Imdad, J. Ali and M. Tanveer, Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces, Chaos Solit. Fract., 42 (2009), 3121-3129. https://doi.org/10.1016/j.chaos.2009.04.017
- N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188. https://doi.org/10.1016/0022-247x(89)90214-x
- B.E. Rhoades, A comparison of various definations of contractive mappings, Proc. Amer. Math. Soc., 226 (1977), 257-290. https://doi.org/10.1090/S0002-9947-1977-0433430-4
- B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis, 47 (2001), 2683-2693. https://doi.org/10.1016/S0362-546X(01)00388-1
- A.F. Roldan Lopez-de-Hierro, E. Karapnar, C. Roldan-Lopez-de-Hierro and J. Martnez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355. https://doi.org/10.1016/j.cam.2014.07.011
- X.J. Yang, D. Baleanu and H.M. Srivastava, Local Fractional Integral Transforms and Their Applications, Published by Elsevier Ltd. (2016).
- Q. Zhang and Y. Song, Fixed point theory for generalized φ-weakly contraction, Appl. Math. Letts., 22 (2009), 75-78. https://doi.org/10.1016/j.aml.2008.02.007