• Title/Summary/Keyword: NCL 회로

Search Result 21, Processing Time 0.035 seconds

Delay Insensitive Asynchronous Circuit Design Based on New High-Speed NCL Cells (새로운 고속의 NCL 셀 기반의 지연무관 비동기 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • The delay-insensitive Null Convention Logic (NCL) asynchronous design as one of innovative asynchronous logic design methodologies has many advantages of inherent robustness, power consumption, and easy design reuses. However, transistor-level structures of conventional NCL gate cells have weakness of low speed, high area overhead or high wire complexity. Therefore, this paper proposes a new high-speed NCL gate cells designed at transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate cells have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption.

Design and Implementation of Asynchronous Circuits using Pseudo-NMOS NCL Gates (의사 NMOS 형태의 NCL 게이트를 사용한 고속의 비동기 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • This Paper Proposes a New High-speed Design Methodology for Delay Insensitive Asynchronous Circuits Combining with a Pseudo-NMOS Structure used for High Performance in Synchronous Circuits. Null Convention Logic(NCL) of Conventional Delay-Insensitive Asynchronous Design Methodologies has many Advantages of High Reliability, Low Power Consumption, and Easy Design Reuses not Dependant on Semiconductor Technology. However. the Conventional NCL Gates has a Complicated Stack Structure, so it Suffers from Increased Circuit Delay. Therefore, a New NCL Gates and its Pipeline Structure for High Performance, and the Proposed Methodology has been Designed and Evaluated by a $4{\times}4$ Multiplier Designed using SK-Hynix 0.18 um CMOS Technology. The Experimental Results are Compared with a Conventional NCL in Terms of Power and Delay and shows that the Propagation Delay of the Proposed Multiplier is Reduced by 85% Compared with the Conventional NCL Multiplier.

Design of Low Power and High Speed NCL Gates (저전력 고속 NCL 비동기 게이트 설계)

  • Kim, Kyung Ki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.112-118
    • /
    • 2015
  • Conventional synchronous circuits cannot keep the circuit performance, and cannot even guarantee correct operations under the influence of PVT variations and aging effects in the nanometer regime. Therefore, in this paper, a DI (delay insensitive) design based NCL (Null Convention Logic) design methodology with a very simple design structure has been used to design digital systems, which is one of well-known asynchronous design methods robust to various variations and does not require any timing analysis. Because circuit-level structures of conventional NCL gates have weakness of low speed, high area overhead or high wire complexity, this paper proposes a new lNCL gates designed at the transistor level for high-speed, low area overhead, and low wire complexity. The proposed NCL gate libraries have been compared to the conventional NCL gates in terms of circuit delay, area and power consumption using a asynchronous multiplier implemented in dongbu 0.11um CMOS technology.

Design of Ultra Low-Voltage NCL Circuits in Nanoscale MOSFET Technology (나노 MOSFET 공정에서의 초저전압 NCL 회로 설계)

  • Hong, Woo-Hun;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Ultra low-power design and energy harvesting applications require digital systems to operate under extremely low voltages approaching the point of balance between dynamic and static power consumption which is attained in the sub-threshold operation mode. Delay variations are extremely large in this mode. Therefore, in this paper, a new low-power logic design methodology using asynchronous NCL circuits is proposed to reduce power consumption and not to be affected by various technology variations in nanoscale MOSFET technology. The proposed NCL is evaluated using various benchmark circuits at 0.4V supply voltage, which are designed using 45nm MOSFET predictive technology model. The simulation results are compared to those of conventional synchrouns logic circuits in terms of power consumption and speed.

Design and Implementation of Low power ALU based on NCL (Null Convention Logic) (NCL 기반의 저전력 ALU 회로 설계 및 구현)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.59-65
    • /
    • 2013
  • Conventional synchronous design circuits cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in this paper, a NCL (Null Convention Logic) design as an asynchronous design method has been proposed, where the NCL method doesn't require any timing analysis, and it has a very simple design methodology. Base on the NCL method, a new low power reliable ALU has been designed and implemented using MagnaChip-SKhynix 0.18um CMOS technology. The experimental results of the proposed NCL ALU have been compared to those of a conventional pipelined ALU in terms of power consumption and speed.

Low Power Reliable Asynchronous Digital Circuit Design for Sensor System (센서 시스템을 위한 저전력 고신뢰의 비동기 디지털 회로 설계)

  • Ahn, Jihyuk;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.209-213
    • /
    • 2017
  • The delay-insensitive Null Convention Logic (NCL) asynchronous design as one of innovative asynchronous logic design methodologies has many advantages of inherent robustness, power consumption, and easy design reuses. However, transistor-level structures of conventional NCL gate cells have weakness of high area overhead and high power consumption. This paper proposes a new NCL gate based on power gating structure. The proposed $4{\times}4$ NCL multiplier based on power gating structure is compared to the conventional NCL $4{\times}4$ multiplier and MTNCL(Multi-Threshold NCL) $4{\times}4$ multiplier in terms of speed, power consumption, energy and size using PTM 45 nm technology.

Partial molal volumes of tetraalkylammonium chlorides in isopropanol-water mixtures (2-프로판올-물 혼합용매에서의 Tetraalkylammonium Chlorides의 분몰랄 부피)

  • Byung-Rin Cho
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.95-105
    • /
    • 1971
  • The apparent molal volumes ${\phi}_v$ of a series of homologous tetraalkylammonium chlorides, $Me_4NCl, Et_4NCl, Pr_4NCl,\;and\;Bu_4NCl$, in a series of isopropanol-water mixtures have been determined at $30^{\circ}C$ from precision density measurements using pycnometers. The values of ${\phi}_v$ extrapolated to infinite dilution give partial molal volumes $\={V}^{\circ}$s which are almost additive for successive homologues and enable one to determine the absolute individual ionic partial molal volumes. The experimental results are discussed in terrns of the varying size and surface charge of the ions and the structure of the binary solvent mixtures. The results indicate that at 0.1 mole fraction isopropanol the maximum structuredness of water causes a minimum in the tetraalkylammonium-cation partial molal volumes, while at 0.2 mole fraction the solvent structure is such that the free volumes is a minimum and the electrostrictive effect of chloride ion is a maximum.

  • PDF

A new interfacing circuit for low power asynchronous design in sensor systems (센서시스템에서의 저전력 비동기 설계를 위한 인터페이싱 회로)

  • Ryu, Jeong Tak;Hong, Won Kee;Kang, Byung Ho;Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2014
  • Conventional synchronous circuits in low power required systems such as sensor systems cannot only satisfy the timing requirement of the low voltage digital systems, but also they may generate wrong outputs under the influence of PVT variations and aging effects. Therefore, in the reliable ultra-low power design, asynchronous circuits have recently been reconsidered as a solution for scaling issues. However, it is not easy to totally replace synchronous circuits with asynchronous circuits in the digital systems, so the interfacing between the synchronous and asynchronous circuits is indispensable for the digital systems. This paper presents a new design for interfacing between asynchronous circuits and synchronous circuits, and the interface circuits are applied to a $4{\times}4$ multiplier logic designed using 0.11um technology.

Viscosities of Tetraalkylammonium Chloride Solutions in Isopropanol-Water Mixtures at $30^{\circ}C$ (2-프로판올-물 혼합용매중의 tetraalkylammonium chloride 용액의 점도에 관한 연구)

  • Byung-Rin Cho;Young-Ja Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.159-163
    • /
    • 1971
  • The relative viscosities ${\eta}_r$ of a series of homologous tetraalkylammonium chlorides $Me_4NCl,\;Et_4NCl,\;Pr_4NCl\;and\;Bu_4NCl$ in a series of isopropanol-water mixtures have been determined at $30^{\circ}C$ using Ubbelohde-type viscometers. The viscosity data have been interpreted in terms of viscosity A-and B-coefficients calculated from the Jones-Dole equation, ${\eta}_r=1+AC^{1/2}+BC$. The results indicate that the structure-breaking effect of chloride ion is maximum at 0.l~0.15 mole fraction isopropanol, while the size effect(Einstein effect) of the larger $R_4N^+$ ions is maximum at 0.2~0.25 mole fraction. The results also indicate that in aqueous and water-rich solutions the larger $R_4N^+$ ions (e.g. $Pr_4N+, Bu_4N^+$) appear to be excellent structure-formers and that the viscosities of solutions is not strongly affected by the electrostriction effect of chloride ion.

  • PDF