• Title/Summary/Keyword: Moving Least Square Method

Search Result 102, Processing Time 0.024 seconds

Development of a new method for improving finite element solutions by placing nodes arbitrarily (임의의 절점 추가로 개선된 유한요소해를 얻는 새로운 방법의 개발)

  • Kim, Hye-Yeong;Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.674-677
    • /
    • 2008
  • An advanced computational strategy for improvement of the accuracy of the structural analysis is developed in this paper. The finite elements connecting the primary nodes are constructed as a ground mesh in a domain, and the secondary nodes can be placed arbitrarily without reconstruction of a mesh. The support domains of the secondary nodes are defined on the basis of finite element mesh, and the shape functions are constructed by using MLS(moving least square) approximations. The present method is useful for controlling the errors without reconstruction of mesh when you add or remove nodes in a domain.

  • PDF

Study on the Airfoil Shape Design Optimization Using Database based Genetic Algorithms (데이터베이스 기반 유전 알고리즘을 이용한 효율적인 에어포일 형상 최적화에 대한 연구)

  • Kwon, Jang-Hyuk;Kim, Jin;Kim, Su-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-66
    • /
    • 2007
  • Genetic Algorithms (GA) have some difficulties in practical applications because of too many function evaluations. To overcome these limitations, an approximated modeling method such as Response Surface Modeling(RSM) is coupled to GAs. Original RSM method predicts linear or convex problems well but it is not good for highly nonlinear problems cause of the average effect of the least square method(LSM). So the locally approximated methods. so called as moving least squares method(MLSM) have been used to reduce the error of LSM. In this study, the efficient evolutionary GAs tightly coupled with RSM with MLSM are constructed and then a 2-dimensional inviscid airfoil shape optimization is performed to show its efficiency.

Reconstruction of Canal Surfaces (캐널곡면의 복원)

  • Lee In-Kwon;Kim Ku-Jin
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.411-417
    • /
    • 2005
  • We present a method to reconstruct a canal surface from a point cloud (a set of unorganized points). A canal surface is defined as a swept surface of a moving sphere with varying radii. By using the shrinking and moving least-squares methods, we reduce a point cloud to a thin curve-like point set which can be approximated to the spine curve of a canal surface. The distance between a point in the thin point cloud and a corresponding point in the original point set represents the radius of the canal surface.

A Real-Space Band-Structure Calculation of 2D Photonic Crystals (2 차원 광결정의 실공간 밴드구조 계산)

  • Jun, Suk-Ky;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1089-1093
    • /
    • 2003
  • The moving least square (MLS) basis is implemented for the real-space band-structure calculation of 2D photonic crystals. The value-periodic MLS shape function is thus used in order to represent the periodicity of crystal lattice. Any periodic function can properly be reproduced using this shape function. Matrix eigenequations, derived from the macroscopic Maxwell equations, are then solved to obtain photonic band structures. Through numerical examples of several lattice structures, the MLS-based method is proved to be a promising scheme for predicting band gaps of photonic crystals.

  • PDF

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

A New Least Mean Square Algorithm Using a Running Average Process for Speech Enhancement

  • Lee, Soo-Jeong;Ahn, Chan-Sik;Yun, Jong-Mu;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.123-130
    • /
    • 2006
  • The adaptive echo canceller (AEC) has become an important component in speech communication systems, including mobile station. In these applications, the acoustic echo path has a long impulse response. We propose a running-average least mean square (RALMS) algorithm with a detection method for acoustic echo cancellation. Using colored input models, the result clearly shows that the RALMS detection algorithm has a convergence performance superior to the least mean square (LMS) detection algorithm alone. The computational complexity of the new RALMS algorithm is only slightly greater than that of the standard LMS detection algorithm but confers a major improvement in stability.

EFFECT OF THE BOUNDARY CONDITION OF REDISTANCE EQUATION ON THE LEVEL SET SOLUTION OF SLOSHING PROBLEM (Redistance 방정식의 경계조건이 슬로싱 문제의 level set 해석에 미치는 영향)

  • Choi, H.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.165-169
    • /
    • 2009
  • The effect of the Dirichlet boundary condition for the redistance equation of level set method on the solutionof sloshing problem is investigated by adopting four Dirichlet boundary conditions. For the solution of the incompressible Navier-Stokes equations, P1P1 four-step fractional finite element method is employed and a least-square finite element method is used for the solutions of the two hyperbolic type equations of level set method; advection and redistance equation. ALE (Arbitrary Lagrangian Eulerian) method is used to deal with a moving computational domain. It has been shown that the free surface motion in a sloshing tank is strongly dependent on the type of the Dirichlet boundary condition and the results of broken dam and sloshing problems using various Dirichlet boundary conditions are discussed and compared with the existing experimental results.

  • PDF

Real-Time Automatic Target Tracking Based on Spatio-Temporal Gradient Method with Generalized Least Square Estimation (일반화 최소자승추정의 시공간경사법에 의한 실시간 자동목표 추적)

  • Jang, Ick-Hoon;Kim, Jong-Dae;Kim, Nam-Chul;Kim, Jae-Kyoon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 1989
  • In this paper, a spatio-temporal gradient (STG) method with generalized least square estimation (GLSE) is proposed for the detection of an object motion in an image sequence corrupted by white Gaussian noise. The proposed method is applied to an automatic target tracker using a high speed 16-bit microprocessor in order to track one moving target in real time. Experimental results show that the proposed method has much better performance over the conventional one with least square estimation (LSE).

  • PDF

An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain (임의의 절점 추가에 의한 개선 유한요소법)

  • Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1626-1633
    • /
    • 2006
  • In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF