Reconstruction of Canal Surfaces

캐널곡면의 복원

  • Published : 2005.08.01

Abstract

We present a method to reconstruct a canal surface from a point cloud (a set of unorganized points). A canal surface is defined as a swept surface of a moving sphere with varying radii. By using the shrinking and moving least-squares methods, we reduce a point cloud to a thin curve-like point set which can be approximated to the spine curve of a canal surface. The distance between a point in the thin point cloud and a corresponding point in the original point set represents the radius of the canal surface.

본 논문에서는 입력으로 주어진 점집차 (point cloud)으로부터 캐널곡면을 복원 (reconstruction)하는 알고리즘을 제시한다. 캐널곡면은 반경이 변화하며 중심점이 기준곡선(spine curve)을 따라 이동하는 구(moving sphere)의 스웹트곡면(swept surface)이다. 이 논문에서는 수축기법(shrinking method)과 moving least-square 방법을 이용하여 주어진 점집합을 세곡선(thin-curve)형태의 점집합으로 수축시킴으로써 캐널곡면의 기준곡선을 근사한다. 근사된 기준곡선과 입력으로 주어진 점집합에 포함된 점들 사이의 거리를 이용하여, 캐널곡면을 구성하는 이동 구의 반경을 계산한다.

Keywords

References

  1. T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu, 'Analysis and applications of pipe surfaces,' Computer Aided Geometric Design, 15(5):437-458, 1998 https://doi.org/10.1016/S0167-8396(97)00042-3
  2. M. Peternell and H. Pottmann, 'Computing rational parametrizations of canal surfaces,' Journal of Symbolic Computation, 23:255-266, 1997 https://doi.org/10.1006/jsco.1996.0087
  3. H. Pottmann and T. Randrup, 'Rotational and helical surface approximation for reverse engineering,' Computing, 60:307-322, 1998 https://doi.org/10.1007/BF02684378
  4. H. Pottmann, H.-Y. Chen, and I.-K. Lee, 'Approximation by profile surfaces,' A. Ball et al. Eds., The Mathematics of Surfaces VIII, Information Geometers, pp.17-36, 1998
  5. H.-Y. Chen, I.-K. Lee, S. Leopoldseder, H. Pottmann, T. Randrup, and J. Wallner, 'On surface approximation using developable surfaces,' Graphical Models and Image Processing, 61:110-124, 1999 https://doi.org/10.1006/gmip.1999.0487
  6. M. Peternell and H. Pottmann, 'Approximation in the space of planes: applications to geometric modeling and reverse engineering,' Rev. R. Acad. Cien. Serie A. Mat, 96(2):243-256, 2002
  7. H. Pottmann and J. Wallner, Computational line geometry, Springer-Verlag, 2001
  8. H. Pottmann, S. Leopoldseder, J. Wallner, and M. Peternell, 'Recognition and reconstruction of special surfaces from point clouds,' Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, Part 3A, Commisiion III, pp. 271-276, 2002
  9. W.-D. Ueng, J.-Y. Lai, and J.-L. Doong, 'Sweepsurface reconstruction from three-dimensional measured data,' Computer-Aided Design, 30(10): 791-805, 1998 https://doi.org/10.1016/S0010-4485(98)00037-2
  10. R. Ramamoorthi and J. Arvo, 'Creating generative models from range images,' SIGGRAPH '99 Proceedings, 1999 https://doi.org/10.1145/311535.311557
  11. I.-K. Lee, 'Pipe Surface Reconstruction Using Shrinking,' 한국컴퓨터그래픽스학회 논문지, 제5권, 제2호, pp.1-7, 1999년 12월
  12. J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, A. K. Peters, 1993
  13. P. Krsek, G. Lukas, and R. R. Martin, 'Algorithms for computing curvatures from range data,' A. Ball et al. Eds., The Mathematics of Surfaces VIII, Information Geometers, pp.1-16, 1998
  14. D. McLain, 'Drawing contours from arbitrary data points,' The Computer Journal, 17:318-324, 1974 https://doi.org/10.1093/comjnl/17.4.318
  15. D. McLain, 'Two dimensional interpolation from random data,' The Computer Journal, 19:178-181, 1976 https://doi.org/10.1093/comjnl/19.2.178
  16. I.-K. Lee, 'Curve reconstruction from unorganized points,' Computer Aided Geometric Design, 17(2): 161-177, 2000 https://doi.org/10.1016/S0167-8396(99)00044-8
  17. D. Levin, 'Mesh-independent surface interpolation,' private communication
  18. G. Wyvill, C. McPheeters, and B. Wyvill, 'Data structure for soft objects,' The Visual Computer, 2:227-234, 1986 https://doi.org/10.1007/BF01900346