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Abstract

The adaptive echo canceller (AEC) has become an important component in speech communication systems, including

mobile station. In these applications, the acoustic echo path has a long impulse response. We propose a
running-average least mean square (RALMS) algorithm with a detection method for acoustic echo cancellation. Using
colored input models, the result clearly shows that the RALMS detection algorithm has a convergence performance
superior to the least mean square (LMS) detection algorithra alone. The computational complexity of the new RALMS
algorithm is only slightly greater than that of the standard LMS detection algorithm but confers a major improvement

in stability.

Keywords: Adaptive echo cancellation, LMS, Moving average estimator, Speech enhancement

|. Introduction

Recently, the use of speech recognition systems, voice-command

systems, and especially hand-free cellular phones has increased
rapidly. A problem arises when the microphone required in these
applications picks up the sound from the loudspeaker. This
feedback effect causes an echo, which can be obvious: the fonger
the delay, the greater the effect the echo has [I1.

The most widely used filters for echo cancellation are the least
mean square (LMS) adaptive finite impulse response (FIR) filters
[2]). The LMS filter is important from a practical standpoint due
to its simple implementation and the FIR filter performs
effectively to model the unknown path. To improve convergence
speed, the length of the filter taps should equal the impulse
response of the unknown path. For systems with long impulse
responses, however, the performance of adaptive echo canceller
(AEC) decreases markedly for two reasons. First, when long
delays are involved, which is uswaily the case in speech
communication systems, the filter requires a large number of
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taps. Second, the unfavorable effect of long taps on convergence
speed is emphasized when the input signal to the unknown path
and estimator consists of highly correlated speech pattemns [3, 4].
In the past few years, considerable research effort has been
devoted to systems with fong impulse responses having many
inactive parts. Examples include room acoustic echo paths [5),
mobile radio channels [6], and NLMS detection [4]. In this paper,
we propose the running-average least mean square (RALMS)
detection algorithm, which is a modification of the LMS detection
algorithm {4) and compare it to the standard LMS algorithm and
the RLS algorithm [7]. The RALMS filter can be described in
terms of a running average of least squares. Particular attention is
given to RALMS methods to increase the step size for more
robust results using the tap detection algorithm examined by
homer [4]. Our simulation result show that the performance of the
RALMS method improves the convergence rate,

The paper is organized as follows. A formal description of the
echo canceller is given in Section 2. Section3 reviews the
fundamentals of adaptive filtering. The running average LMS
(RALMS) with tap detection is detailed in Section 4. In Section
5, we compare the outcomes of the simulations and discuss their
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implications in detail. Finally, we summarize our conclusions in
Section 6.

[l. Problem Description

As long impulse responses are inherent in modern speech
communication system, some form of echo reduction is required
to ensure high quality of service, These echo reduction techniques
are described in this section with emphasis on the echo canceller.

Acoustic echo paths are non-stationary, The movement of
objects within the room, temperature, pressure, and humidity affect
sound and how it is reflected [8). This is modeled mathematically
by using a filter with a time-variable impulse response.

The basic idea behind an echo canceller is illustrated in Fig. 1.
An esfimate y( ») of the echo y(») is generated and subtracted
from the microphone output u(5), and the difference between

v(n) and 3 »), known as the error signal o(5), is transmitted
to the far end. When 73() matches y(n) exactly, o(n)
contains only the near-end signal. The echo path is generally in
the digital domain, modeled as a linear time-varying filter with
impulse response A( 7, 7). Thus, the echo y(») can be written as

wn)= ik(n‘!)u(n—-z) 8]

and the microphone output u( ), consisting of the echo y(#)
and the near-end signal npise(n) given by

(1) = y(n) 1 noise( n) 2
= gk(m D n— O+ noiseln)

It s usually assumed that when />p, then g(#, ) =0. This
can be assumed since x()) is very small for large values of ¢
since it has an exponentially decaying envelope

This simplification yields

om)= "gﬂ‘h(n, Dl n— D + noise( ) @

The estimated echo 75( x) is then obtained by filtering the
far-end signal () with a linear time invariant filter pu(#, O
that matches #(», 5.

Thus, the output of the estimated filter is
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The difference between the synthesized signal
desired signal o( ) is sent to the far end:

3 n) and the

dny=v(n)—hv U 5)

The controlling part of an echo canceller is the echo canceling
fitter  ho(n, n. The filter should be chosen such that the
difference between J( ») and y(x) is as small as possible by a
certain means of measurement. A common criterion is

ho, o= arg [ min E [e(s)| *] ©
where 4y and jy, are N by | vector, where the %
element is the ;# coefficient for the filter coefficients of the
echo canceller filter zy(5,» and the optimal echo canceller
filter 4v ,{x, ., respectively. The echo canceling filter fu( 5, /)
is generally made adaptive; that is the coefficients of the filter
are updated recursively when new data are available. As the filter
is adaptive, it can automatically adjust itself to different
environments and track the changes in the environment.

lll. Adaptive Filter Review

The main part of an echo canceller is the echo canceling filter.
This fifter should be such that the difference between the
estimated echo and the microphotie output is as smali as possible
m a statistical sense, A commonly used method to measure the
size of the mean square eror {MSE) involves the well-known
Wiener filter. In order to allow the echo canceller to work in
different environments and to track environmental changes, the
echo canceling filter is exhibits adaptive qualities. This section
presents the basics of adaptive filters, starting with the solution of
the Wiener filter [7, 9].

3.1, Wiener solution
Referring back to Fig.
hv(n) is ideally equal to A(w) thus, it is desirable for the mean

1. and assuming noise(n)=0,, then

square error (MSE) ]é(rr)l2 to be at a minimum. So the cost
function can be defined as
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Fig. 1. General LMS echo canceller,
2
J(n) = Elle()]] (7)
e(n)=v(n}- y(n) (8)

Hmy=m' *U 9)

As it is known that E[v’(m)]} is the mean squared power, v (n}
of o the expected value, E[v(mu(m)] is the cross-correlation
vector between v(n) and u(n), These two are correlated since
v(n) is wu(n) after it has been through the filter. The
cross-correlation vector is represented by £y, The autocorrelation
matrix is represented by R, which is Elu(n)u(n)"].

The solution is simply

R v, =P, (10)
W, =R.P, - (1)

v

which gives #Voy , the optimum tap weight vector [].

3.2, The least mean square (LMS) algorithm
From the steepest descent, the next updated parameters of the
filter is '

o+ 1y =hvn)+ B, - R, ) (12)
Expanding this gives
Iv(n+1) = hv(m) + p'U(n)e(n) {13)

The LMS algorithm is often called a stochastic gradient
algorithm [7, 9] and is the most commonly used adaptive
filtering algorithm because it is both very simple and works well.
In particular, the LMS requires relatively little computational
resources, Note that the parameter # plays a very important role
in the LMS algorithm. It can also be varied with time, but a
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constant # is usually used, which is chosen after experimentation

for a given application.

V. Running-Average LMS (RALMS) with
The Detection Algorithm

The FIR filter is a generalization of the concept of a running
average filter. The running average method is commonly used
whenever data fluctuate and must be smoothed prior to
interpretation [10].

The standard detection LMS [4] has a better convergence rate
than the LMS, but the detection LMS is quite similar to the LMS
in that a problem occurs with fast convergence: the larger the
convergence weight factor #, the smaller the stability, and
conversely, the smaller the convergence weight factor #, the
higher the stability. In this section, we will emphasize the
convergence rate as well as stability using the new RALMS
algorithm. The running average filter is a simple, linear,
time-invariant system that is defined by an equation [10]. This
system (14) is called an L-point running average of estimation
error because the output at time » is computed as the average of
eln] and the L-1 previous samples of the input.

RAVerrin] = %ie[nvk]

-i—(e[n]+e[n—l]+m+e[n—£.+l] (14)

A new approach to control echoes within a speech
communication system is to use echo cancellation, which
involves an active detector and running average filter, as shown
in Fig. 2.

Noise(n)
Input Unknown vy At
U(n) > Channel ()=/\
" AN
V{n)
Adaptive o Y +
| Fiter o TN
“1 (Estimator) AN _}
hv E(n)
$ v
Running
Active Average
detector Algorithm
+ Mverr(n)

Fig. 2. RALMS echo canceller,




4 1, Detection method

The unknown channel is time-invariant and modeled by an
n-delay tap #=©(z"') that has only m < n nonzero taps: where
z7' is the unit delay operator.

—lp

O(z")=b,z"+b 2z + - +b, z

15

where 0S4 4, <-+-<f, <n-L Consider the unknown channel
as described by Eq. (15), which we parameterize by the
n-dimensional parameter vector:

[9 b 9; " ef..-fm—l.bf... ’en—l—j,.]r

(16)

2=h=l J' ¥
where 7> Jn > Jaa > > /> />0 and 6, is the zero matrix
of size 1% b is the non zero matrix. [b;|> Vol /o)),
where 72 is the estimate of m, O, and j?‘,fm are the variances
of u(k) and noise(k). Active parameter has a magnitude greater
than the LMS adaptive noise level [4, 13]. Each of the remaining
parameters is defined as an inactive parameter [14]. The goal of
detection is to determine the positions of the m non zero
elements of ©. We use the following structurally consistent
least-squares {SCLS) based cost function [14]:
JSCLS(N)=JL§(N)+mO.3 logN (17

where Jis(N)= 2 ILIWk) - UKV, o] s the variance of

v(k); and m is the unknown number of active parameters.

. ¥ n ,
J scc =§Iv2(k)_;z=l[xji(N)‘Jvl°g N] a8

N
D vik)u, (k))°
X, (Ny=stp
f‘:.” (k)

(19

It is apparent that scis is minimized by those indices J; =J
that satisfy

X (N)y>T(N)

logN &
where T(N)=a’ log N ~ —=— = ; (k) 0

Where X is known as the activity measure, T(¥)is the

activity threshold.
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4.2, RALMS algorithm with detection
This approach is summarized by the following algorithm {14].
1. Choose the LMS, forgetting the factor @ €[0.1). Set
d(k)=0,a,(0)=0,5,(0)=4,>0,c,(0)=0, 6,(0)=90, and

j=0,l,"',-ﬂ—1_
2, Update d(k),a,(j<k),b,(jsk),ande,(j<k) at time
via

b, (k) =b,(k —1)+v(k)u(k - j)
a, (k) = a,(k-1) +u(k - j)
b, (k)

o®

d{k) = dk -+ v(k)*.

¢ (k)=

3. Determine the set of indices 0} that satisfy
x,(k)>[d(k}logk]/k. Construct an nx1 vector &%),
with ones in the positions comresponding to the set of
indices {65} and zero in the remaining positions.

4, Update the new tunning average estimator 6,(ky at time k
via where v =(6,(k),6,(k),0,.. (k)

n =48 e(n) =v(m)— hv(k)" U

RAVen{n]=% S dn-4]
=%(({n]+e[n—l]+-~+e[n—L+l])
6 (k+1y=a" 8, (k)y+ p* RAVerr g (Kyu(k - j)

where £, is the J th element of g(k). -
5. Retum fo step 2.

V. Simulation Result

In this section, we discuss the results of several simulations
based on the LMS, RALMS, and RLS algorithms with nonzero
tap detection and prewhitening methods. The unknown channel
had m=>35active taps and a total length of #n=48. The
additional signal noiseused was a white zero mean Gaussian
signal of unit variance.

5.1, Standard adaptive filter comparison

The filters in the experiments are shown in Table 1:the LMS,
NLMS, and RLS. The MSEat 16000 samples is less with the
RLS compared to the LMS and NLMS.



Table 3, Comparison of LMS, NLMS, and RLS with mean squared error
{MSE),

LMS NLMS RLS
MSE at white input 0,022 0,029-0 065 -
MSE at color input 0,020-0029 0,043-0070 0,005-0,006

5.2. Prewhitening methods with the tap
detection result

When the input signal is colored, the correlation within the
input signal causes coupling, and input signal prewhitening
methods should be applied [4].

The asymptotic error of 16000 samples is substantiatly less
with the zero tap detection algorithm compared to the LP method
LMS without tap detection, which is shown in Figs. 3, as a
reduction from 48 active taps detected to only 5 taps detected.
The simulation results in Table 2 indicate that AR prewhitening
provides a considerable improvement in asymptotic performance
of the LMS active tap estimator [L1].

Table 2, Comparison of LP method LMS with/without tap detection,
SNR=0dB,

LP method LMS
LP method LMS tap detection

Active taps detected 48 5
Mean squared error 0.04-0.05 0.,0005-0,005

This model corresponds to a first-order LP input. The unknown
channel had m=5 active taps and a total length of »=48.
Furthermore, the additional signal roise(k) used was a zero mean
white Gaussian signal with unit variance. The results of
simulating the first-order LP input model and the same model
with zero tap detection and LP prewhitening are shown in Fig, 3
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Fig, 3. Mean squared error and number of active taps detected by the
LP method LMS, z=0.002

5.3. RALMS with the tap detection result

We combined the running average LMS algorithm with the
detection method. The LMS [4] with the tap detection is usually
unstable, and has a large mean squared error at 16000 samples.
However, the RALMS has a considerable ameliorating effect on
both the stability and mean squared error, and this performance is
better than that of the LMS with the detection method. The
performance of the two models, the LMS and RALMS, both with
tap detection, are shown in Table 3 below.

The results of simulations for the RALMS model are shown in
Fig. 4.

Table 3, Comparison of the new RALMS method and the LP method
LMS with tap detection,

LP method LMS LP method RALMS
with tap detection  with tap detection

Convergence H H
weight factor 000t 0.0%1 005 0.1 0001 001 005 03

Mean squared 0002004 0.4 017 20 0,06 0,0030.001

. i H ; ; ; i ;
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Fig. 4. Mean squared emor and number of active taps detected by
the RALMS u =105

Table 4, Comparison of the MSE for RALMS with running average fitter

size,
Newly RALMS with tap detection
Running  Mean squared Mean squared Mean squared
average error error error
point {#= 005) (#=05) (H=01)
24 point 0,003 0.04 0,005
48 point 0.001~0.,002 0,04 0,001-0,003
64 point 0.002 005 0,0005~0,0008

The overall performance of the RALMS with running average
filter size is shown in Table 4. The RALMS has a considerable
ameliorating effect on the stability and mean squared error
(MSE). The simulation results the LMS with detection, RLS, and
RALMS schemes is shown in Fig. 5 below.
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5.4, Speech signal simulations

Fig. 6 shows the desired signal, adaptive output signal,
estimation error, and cost functions for the LMS algorithm with
speech input, FIR filter order of 1000, and step size of 0.005.
The MSE shows that as the algorithm progresses, the average
value of the cost function decreases. This corresponds to the
filter’s impuise response converging on the actual impulse
response, more accurately emulating the desired signal and thus

more effectively canceling the echoed signal.
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Fig, 6, Standard LMS algorithm for speech input, adaptive fitter tap =
1000, step size = 0005,

The success of the echo cancellation can be determined by the
ratio of the desired signal and the error signal. Fig. 7 shows this
attenuation as expressed in decibels. The average attenuation for

this simulation of the LMS algorithm was -12.9 dB.

The RALMS algorithm was simulated using Matlab. Fig. 8
shows the results of the RALMS adaptive echo cancellation

simulation.
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Fig. 9 shows the dB attenuation of the echoed signal by the
RALMS adaptive filter, which had an average attenuation
of -19.5 dB, an approximate improvement of 6 dB over the
standard LMS algorithm,

5.5, Computational cost

The LMS active tap estimator requires 4n+2 multiplications
per sample interval, which is essentially twice that of the LMS
estimator {4). The computational cost of RALMS is as follows:
Snt+2.

1) RALMS update of #v(k) in Step 4 3n;
2) Active detection in Steps 2 and 3 2n+2;
Item 2 can broken in the following manner:
2.1) Update of k), j=0:n-1
requires 2n multiplications.
2.2) Update of a;(k),j=0:n-1
requires a total of one multiplication.
2.3) (logk)/k can be obtained from a lookup table.
There, [d(k)logk)/% requires one multiplication
per sample interval.

VI. Conclusions

This paper considered the LMS estimation of channels that
have impulse responses consisting of extended regions of active
The standard detection LMS algorithm has a better
convergence rate than the LMS family algorithm, but since the
standard detection LMS is quite similar to the LMS family
algorithm, fast convergence is a problem: the larger the
convergence weight factor |, the lower the system stability, Qur

taps.

proposed RALMS detection scheme has a matkedly improved
convergence weight factor, as well as greater stability. Our future
work is to test the robustness of the proposed algorithm against
various experiments, such as real time environment. Furthermore,
experiment based on the precisely analysis of proposed algorithm.
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