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Abstract

The adaptive echo canceller (AEC) has become an important component in speech communication systems, including 

mobile station. In these applications, the acoustic echo path has a long impulse response. We propose a 

running-average least mean square (RALMS) algorithm with a detection method for acoustic echo cancellation. Using 
colored input models, the result clearly shows that the RALMS detection algorithm has a convergence performance 

superior to the least mean square (LMS) detection algorithm alone. The computational complexity of the new RALMS 
algorithm is only slightly greater than that of the standard LMS detection algorithm but confers a major improvement 

in stability.

Keywords^ Adaptive echo cancellation, LMS, Moving average estimator, Speech enhancement

I. Introduction

Recently, the use of speech recognition systems, voice-command 
systems, and especially hand-free cellular phones has increased 
rapidly. A problem arises when the microphone required in these 
applications picks up the sound from the loudspeaker. This 
feedback effect causes an echo, which can be obvious: the longer 
the delay, the greater the effect the echo has [1].

The most widely used filters for echo cancellation are the least 

mean square (LMS) adaptive finite impulse response (FIR) filters 
[2], The LMS filter is important from a practical standpoint due 
to its simple implementation and the FIR filter performs 
effectively to model the unknown path. To improve convergence 
speed, the length of the filter taps should equal the impulse 
response of the unknown path. For systems with long impulse 
responses, however, the performance of adaptive echo canceller 
(AEC) decreases markedly fbr two reasons. First, when long 
delays are involved, which is usually the case in speech 
communication systems, the filter requires a large number of
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taps. Second, the unfavorable effect of long taps on convergence 
speed is emphasized when the input signal to the unknown path 
and estimator consists of highly correlated speech patterns [3, 4]. 

In the past few years, considerable research effort has been 
devoted to systems with long impulse responses having many 

inactive parts. Examples include room acoustic echo paths [5], 
mobile radio channels [6], and NLMS detection [4]. In this paper, 
we propose the running-average least mean square (RALMS) 
detection algorithm, which is a modification of the LMS detection 

algorithm [4] and compare it to the standard LMS algorithm and 
the RLS algorithm [7]. The RALMS filter can be described in 

terms of a running average of least squares. Particular attention is 
given to RALMS methods to increase the step size for more 

robust results using the tap detection algorithm examined by 
homer [4]. Our simulation result show that the performance of the 

RALMS method improves the convergence rate.
The paper is organized as follows. A formal description of the 

echo canceller is given in Section 2. Section3 reviews the 

fundamentals of adaptive filtering. The running average LMS 
(RALMS) with tap detection is detailed in Section 4. In Section 
5, we compare the outcomes of the simulations and discuss their 
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implications in detail. Finally, we summarize our conclusions in 
Section 6.

II. Problem Description

As long impulse responses are ' inherent in modem speech 
communication system, some form of echo reduction is required 
to ensure high quality of service. These echo reduction techniques 
are described in this section with emphasis on the echo canceller.

Acoustic echo paths are non-stationary. The movement of 

objects within the room, temperature, pressure, and humidity affect 
sound and how it is reflected [8]. This is modeled mathematically 
by using a filter with a time-variable impulse response.

The basic idea behind an echo canceller is illustrated in Fig, 1. 

An estimate 3^( w) of the echo y( n) is generated and subtracted 
from the microphone output y(w), and the difference between 

v(n) and 程(祖)，known as the enor signal e(n), is transmitted 

to the far end. When 3^( n) matches y(n) exactly, e(n) 
contains only the near-end signal. The echo path is generally in 

the digital domain, modeled as a linear time-varying filter with 

impulse response /)• Thus, the echo)(料)can be written as

oo

y(n) = S I) (1)
브Fb

and the microphone output consisting of the echo n) 

and the near-end signal noise( n) given by

n) = y( n) + noised n) (2)
十oo

=1) + noise(n)

It is usually assumed that when ，느]v, then h(n, Z) = 0- This 

can be assumed since is very small for large values of I 

since it has an exponentially decaying envelope.
This simplification yields

N ~ 1

n) = noise(n) (3)

The estimated echo 或(舛)is then obtained by filtering the 
far-end signal u(n) with a linear time invariant filter hv(n, 1) 

that matches h{n, /).
Thus, the output of the estimated filter is

八 N~ 1
程(力)= '瓦}RnJ)认 n — t) (4)

The difference between the synthesized signal 或(n) and the 
desired signal v(n)is sent to the far end:

e{n) = v{n) — hv * U (5)

The controlling part of ah echo canceller is the echo canceling 

filter hv{nt /)■ The filter should be chosen such that the 

difference between 義(n) and v(n) is as small as possible by a 
certain means of measurement. A common criterion is

hv 政=arg[ min E\e{n}\2] (6)

where hv and kv opt are N by 1 vector, where the Ith 

element is the Ith coefficient for the filter coefficients of the 

echo canceller filter kv(n, I) and the optimal echo canceller 

filter hv 여/、n, I), respectively. The echo canceling filter hv{n, /) 

is generally made adaptive; that is the coefficients of the filter 

are updated recursively when new data are available. As the filter 
is adaptive, it can automatically adjust itself to different 
environments and track the changes in the environment.

III. Adaptive Filter Review

The main part of an echo canceller is the echo canceling filter. 
This filter should be such that the difference between the 
estimated echo and the microphone output is as small as possible 
in a statistical sense. A commo까y used method to measure the 
size of the mean square error (MSE) involves the well-known 
Wiener filter. In order to allow the echo canceller to work in 
different environments and to track environmental changes, the 

echo canceling filter is exhibits adaptive qualities. This section 
presents the basics of adaptive filters, starting with the solution of 
the Wiener filter [7, 9].

3.1. Wiener solution
Referring back to Fig. 1. and assuming ”。诂义刀) 느 0,, then 

hv(n)is ideally eq나al to h(n) thus, it is desirable for the mean 
square error (MSE)同”)『to be at a minimum. So the cost 

function can be defined as
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Noise

Fig. 1. General LMS echo canceller.

八”) = 列 e(째 2] 

e(n) - v(n) - y(n) 

y(n)=伸 * U

(7)

(8)

(9)

As it is known that E[v2(n)] is the mean squared power, v («) 

of 勇 the expected value, E\y(n)u(n^ is the cross-correlation 

vector between v(m) and These two are correlated since 
v(h) is u(n) after it has been through the filter. The 

cross-correlation vector is represented by P、The autocorrelation 

matrix is represented by &湖,which is £[w(H)M(n)r].

The solution is simply

RuuhvOpt=PN (10)

% = RulPN (11)

which gives ^vopt, the optimum tap weight vector [9].

3.2. The least mean square (LMS) algorithm
From the steepest descent, the next updated parameters of the 

filter is

方】"+ 1)=加仞+ 〃[鸟-&"仞] (12)

Expanding this gives

hv(n + 1) - hv(n) + ^U(n)e(n) (13)

The LMS algorithm is often called a stochastic gradient 

algorithm [7, 9] and is the most commonly used adaptive 
filtering algorithm because it is both very simple and works well. 

In particular, the LMS requires relatively little computational 
resources. Note that the parameter 卩 plays a very important role 
in the LMS algorithm. It can also be varied with time, but a 

constant 卩 is usually used, which is chosen after experimentation 
for a given application.

IV. Running-Average LMS (RALMS) with 
The Detection Algorithm

The FIR filter is a generalization of the concept of a running 
average filter. The running average method is commo미y 나sed 

whenever data fluctuate and must be smoothed prior to 

interpretation [10].
The standard detection LMS [4] has a better convergence rate 

than the LMS, but the detection LMS is quite similar to the LMS 
in that a problem occurs with fast convergence: the larger the 

convergence weight factor A, the smaller the stability, and 
conversely, the smaller the convergence weight factor 日，the 
higher the stability. In this section, we will emphasize the 
convergence rate as well as stability using the new RALMS 
algorithm. The running average filter is a simple, linear, 

time-invariant system that is defined by an equation [10]. This 
system (14) is called an L-point running average of estimation 

error because the output at time n is computed as the average of 
e[«] and the L-\ previous samples of the input.

RAVerr\n\ =丄 £ e[w - k]
L K=0

= -i-(e[w] + e[w-l] + --- + e[n-Z + l] (14)

A new approach to control echoes within a speech 
communication system is to use echo cancellation, which 
involves an active detector and running average filter, as shown 

in Fig. 2.
Noise(n)

Fig. 2. RALMS echo canceller.
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4.1. Detection method
The unknown channel - is time-invariant and modeled by an 

n-delay tap 步= ®(z") that has only m < n nonzero taps: where 

z시 is the unit delay operator.

®(Z「')= b,z-'' +b,2z~，2 +…+妃― (15)

where °-A -h < ' Consider the unknown channel

as described by Eq. (15), which we parameterize by the 

n-dimensional parameter vector:

0 = [El"/, 05L如，• • •，皿，加-丿 J (16)

where n>Jm>扁너 >…>丿2 >/ >°, and 们 is the zero matrix 

of size 1x j is the non zero matrix. |이 느 赤 /(论),

where m is the estimate of m, crj and(y^oise are the variances 

of and noise(k). Active parameter has a magnitude greater 
than the LMS adaptive noise level [4, 13]. Each of the remaining 

parameters is defined as an inactive parameter [14]. The goal of 
detection is to determine the positions of the m non zero 
elements of 0. We use the following structurally consistent 

least-squares (SCLS) based cost function [14]:

jscls(N) = Jls(、N) + n忒典 N (17)

where 丿爵3)=〉：腭[卩侬)一加"(幻']七is the variance of 

u(幻；and m is the unknown number of active parameters.

j SCLC 드

* = 1 i = i 、丄3

[力V。)幻,侦)]2
X”(N) =上」-----------------

泌) (19)
4 = 1

It is apparent that Jscls is minimized by those indices 匕=J 

that satisfy '

Xj(N)>T(N、)

where T(N) = < log N « 쁙?~ { v2 (k) (刎)

Where 与㈣ is known as the activity measure, T{N) is the 

activity threshold.

4.2. RALMS algorithm with detection
This approach is summarized by the following algorithm [14],
1. Choose the LMS, forgetting the factor a 티QI). Set 

d(*) = 0,a.(0) = 0,b.(0)=禹〉0,c}(0) = 0,毎(0) = 0, and

2. Update < k\andCj{j < k) at time k

via
bjQc、) = bj(k-1) + v(k)u(k - j)

이&) = fM — l) +u(k-j)2

d(k) = d(k-l) + v(k)2.

3. Determine the set of indices {如} that satisfy 

Xj(k) > [d{k)logk]/k.t Construct an nxl vector g(幻， 

with ones in the positions corresponding to the set of 

indices 也混 and zero in the remaining positions.

4. Update the new running average estimator 々(*)at time k 

via where 方"二(&)(*), 0[(人:),…,跟丄人)产

« = 48 e(0) = v(ri)-肘(k、j「* U

]LRAVen\n\=— £成?-人]

Lk=o

=云(涉〃]+涉〃-1]+，*，+涉〃-£+1])

0J 侬 +1) = 사 (幻 +，〃 * R4 Verr * gj (k)u(k - j), 

where 幻(*)is the J th element of g(幻.

5. Return to step 2.

V. Sim니ation Res니t

In this section, we discuss the results of several simulations 

based on the LMS, RALMS, and RLS algorithms with nonzero 
tap detection and prewhitening methods. The unknown channel 

had m = 5 active taps and a total length of 刀= 48. The 

additional signal noise used was a white zero mean Gaussian 

signal of unit variance.

5.1. Standard adaptive filter comparison
The filters in the experiments are shown in Table l:the LMS, 

NLMS, and RLS. The MSEat 16000 samples is less with the 
RLS compared to the LMS and NLMS.
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Table 1. C이mparison of LMS, NLMS, and RLS with mean squared error 
(MSE).

LMS NLMS RLS

MSE at white input 0,022 0.029-0.065 -

MSE at c이or input 0.020-0.029 0.043-0.070 0.005-0.006

5.2. Prewhitening methods with the tap 
detection result

When the input signal is colored, the correlation within the 
input signal causes coupling, and input signal prewhitening 
methods should be applied [4].

The asymptotic error of 16000 samples is substantially less 

with the zero tap detection algorithm compared to the LP method 
LMS without tap detection, which is shown in Figs. 3, as a 

reduction from 48 active taps detected to only 5 taps detected. 
The simulation results in Table 2 indicate that AR prewhitening 

provides a considerable improvement in asymptotic performance 
of the LMS active tap estimator [11].

5.3. RALMS with the tap detection result
We combined the running average LMS algorithm with the 

detection method. The LMS [4] with the tap detection is usually 
unstable, and has a large mean squared error at 16000 samples. 

However, the RALMS has a considerable ameliorating effect on 
both the stability and mean squared error, and this performance is 
better than that of the LMS with the detection method. The 
performance of the two models, the LMS and RALMS, both with 
tap detection, are shown in Table 3 below.

The results of simulations for the RALMS model are shown in 

Fig- 4.

Table 3. Comparison of the new RALMS method and the LP method 
LMS with tap detection.

LP method LMS 
with tap detection

LP method RALMS 
with tap detection

Convergence 卩 A
weight factor 0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1

Mean squared 
error 0.002 0.04 0.4 0.17 20 0,06 0.003 0.001

Table 2. Comparison of LP method LMS with/without tap detection, 
SNR=0dB.

LP method LMS LP method LMS 
with tap detection

Active taps detected 48 5
Mean squared error 0.04-0.05 0.0005-0.005

, Adaptive Filter Convergence Rate

10 ----------- !----------- ------------ ■——

Sum of active taps - RALMS with Zera Tap Delection 

10

0 - 05 1 1.5 2

x104

Asymptotic Error Examination 
40 

30

This model corresponds to a first-order LP input. The unknown 
channel had 物=5 active taps and a total length of « = 48. 
Furthermore, the additional signal noise(k) used was a zero mean 

white Gaussian signal with unit variance. The results of 
simulating the first-order LP input model and the same model 

with zero tap detection and LP prewhitening are shown in Fig. 3
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Table 4. Comparison of the MSE for RALMS with running average filter 
size.

Newly RALMS with tap detection
R 니 nning Mean squared Mean sq나ared Mean squared
average error error error

point (A= 0.05) 나J 0.5) 나J 0.1)
24 point 0.003 0.04 0.005
48 point 0.001-0.002 0.04 0.001-0.003
64 point 0.002 0.05 0.0005-0.0008

The overall performance of the RALMS with running average 
filter size is shown in Table 4. The RALMS has a considerable 
ameliorating effect on the stability and mean squared error

Fig. 3. Mean scared error and number of active taps detected by the 
LP method LMS, 々 = 0.002.

(MSE). The simulation results the LMS with detection, RLS, and 
RALMS schemes is shown in Fig. 5 below.
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5.4. Speech signal simulations

Fig. 6 shov/s the desired signal, adaptive output signal, 
estimation error, and cost functions fbr the LMS algorithm with 

speech input, FIR filter order of 1000, and step size of 0.005. 
The MSE shows that as the algorithm progresses, the average 

value of the cost function decreases. This corresponds to the 
filter's impulse response converging on the actual impulse 
response, more accurately emulating the desired signal and thus 

more effectively canceling the echoed signal.
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Fig. 6. Standard LMS algorithm for speech inp니t, adaptive filter tap = 
1000, step size = 0.005.

The success of the echo cancellation can be determined by the 
ratio of the desired signal and the error signal. Fig. 7 shows this 
attenuation as expressed in decibels. The average attenuation fbr 
this simulation of the LMS algorithm was - 12.9 dB.

The RALMS algorithm was simulated using Matlab. Fig. 8 
shows the results of the RALMS adaptive echo cancellation 
simulation.
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Fig. 9 shows the dB attenuation of the echoed signal by the 
RALMS adaptive filter, which had an average attenuation 

of - 19.5 dB, an approximate improvement of 6 dB over the 
standard LMS algorithm.

5.5. Computational cost
The LMS active tap estimator requires 4n + 2 multiplications 

per sample interval, which is essentially twice that of the LMS 

estimator [4]. The computational cost of RALMS is as follows: 
5n+2.

1) RALMS update of hv(k) in Step 4 3n;
2) Active detection in Steps 2 and 3 2n+2;

Item 2 can broken in the following manner:

2.1) Update of 이#)〃‘ =。：〃~1

requires 2n multiplications.

2.2) Update of 乌(幻,丿=0mT 

requires a total of one multiplication.

2.3) (log k)/k can be obtained from a lookup table. 

There, \ogk]/k requires one multiplication 

per sample interval.

VI. Conclusions

This paper considered the LMS estimation of channels that 
have impulse responses consisting of extended regions of active 
taps. The standard detection LMS algorithm has a better 
convergence rate than the LMS family algorithm, but since the 
standard detection LMS is q냐ite similar to the LMS family 
algorithm, fast convergence is a problem: the larger the 

convergence weight factor 卩，the lower the system stability. Our 
proposed RALMS detection scheme has a markedly improved 
convergence weight factor, as well as greater stability. Our future 
work is to test the robustness of the proposed algorithm against 
various experiments, such as real time environment. Furthermore, 
experiment based on the precisely analysis of proposed algorithm.
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