• Title/Summary/Keyword: LSQR

Search Result 8, Processing Time 0.019 seconds

A Study on QoS Routing Performance Enhancement by using LSQR Scheduling in WiMAX Mesh Networks (와이맥스 메쉬 네트워크에서 LSQR 스케줄링을 이용한 QoS 라우팅 성능 향상에 관한 연구)

  • Tak, Wooyoung;Lee, Gowoon;Joh, Hangki;Ryoo, Intae
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.429-437
    • /
    • 2013
  • Recently, wireless mesh network has been focused as a core technology for resolving the issues of shadow zone and distributed bypass route as it has broad service coverage as well as good scalability features. It, however, provides users with relatively lower QoS than infrastructure-based networks. In order for addressing this QoS issue and also enhancing the routing performance of mobile WiMax mesh network, this paper proposes a load sensing QoS routing (LSQR) scheme. In the proposed LSQR, each node figures out network congestion status and selects a bypass route accordingly. With this scheme, we can expect good load balancing effect by changing the routing paths from centralized links to distributed links under a heavy traffic condition. From the simulation results using NS-2, it has been verified that the LSQR shows lower packet loss rates and data transmission delays than the existing representative routing schemes.

GLOBAL GENERALIZED CROSS VALIDATION IN THE PRECONDITIONED GL-LSQR

  • Chung, Seiyoung;Oh, SeYoung;Kwon, SunJoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.149-156
    • /
    • 2019
  • This paper present the global generalized cross validation as the appropriate choice of the regularization parameter in the preconditioned Gl-LSQR method in solving image deblurring problems. The regularization parameter, chosen from the global generalized cross validation, with preconditioned Gl-LSQR method can give better reconstructions of the true image than other parameters considered in this study.

A PRECONDITIONER FOR THE LSQR ALGORITHM

  • Karimi, Saeed;Salkuyeh, Davod Khojasteh;Toutounian, Faezeh
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.213-222
    • /
    • 2008
  • Iterative methods are often suitable for solving least squares problems min$||Ax-b||_2$, where A $\epsilon\;\mathbb{R}^{m{\times}n}$ is large and sparse. The well known LSQR algorithm is among the iterative methods for solving these problems. A good preconditioner is often needed to speedup the LSQR convergence. In this paper we present the numerical experiments of applying a well known preconditioner for the LSQR algorithm. The preconditioner is based on the $A^T$ A-orthogonalization process which furnishes an incomplete upper-lower factorization of the inverse of the normal matrix $A^T$ A. The main advantage of this preconditioner is that we apply only one of the factors as a right preconditioner for the LSQR algorithm applied to the least squares problem min$||Ax-b||_2$. The preconditioner needs only the sparse matrix-vector product operations and significantly reduces the solution time compared to the unpreconditioned iteration. Finally, some numerical experiments on test matrices from Harwell-Boeing collection are presented to show the robustness and efficiency of this preconditioner.

  • PDF

RESTORATION OF BLURRED IMAGES BY GLOBAL LEAST SQUARES METHOD

  • Chung, Sei-young;Oh, SeYoung;Kwon, SunJoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2009
  • The global least squares method (Gl-LSQR) is a generalization of LSQR method for solving linear system with multiple right hand sides. In this paper, we present how to apply this algorithm for solving the image restoration problem and illustrate the usefulness and effectiveness of this method from numerical experiments.

  • PDF

TWO DIMENSIONAL VERSION OF LEAST SQUARES METHOD FOR DEBLURRING PROBLEMS

  • Kwon, SunJoo;Oh, SeYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.895-903
    • /
    • 2011
  • A two dimensional version of LSQR iterative algorithm which takes advantages of working solely with the 2-dimensional arrays is developed and applied to the image deblurring problem. The efficiency of the method comparing to the Fourier-based LSQR method and the 2-D version CGLS algorithm methods proposed by Hanson ([4]) is analyzed.

ON THE PURE IMAGINARY QUATERNIONIC LEAST SQUARES SOLUTIONS OF MATRIX EQUATION

  • WANG, MINGHUI;ZHANG, JUNTAO
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.95-106
    • /
    • 2016
  • In this paper, according to the classical LSQR algorithm forsolving least squares (LS) problem, an iterative method is proposed for finding the minimum-norm pure imaginary solution of the quaternionic least squares (QLS) problem. By means of real representation of quaternion matrix, the QLS's correspongding vector algorithm is rewrited back to the matrix-form algorthm without Kronecker product and long vectors. Finally, numerical examples are reported that show the favorable numerical properties of the method.

ITERATIVE ALGORITHMS FOR THE LEAST-SQUARES SYMMETRIC SOLUTION OF AXB = C WITH A SUBMATRIX CONSTRAINT

  • Wang, Minghui;Feng, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.1-12
    • /
    • 2009
  • Iterative algorithms are proposed for the least-squares symmetric solution of AXB = E with a submatrix constraint. We characterize the linear mappings from their independent element space to the constrained solution sets, study their properties and use these properties to propose two matrix iterative algorithms that can find the minimum and quasi-minimum norm solution based on the classical LSQR algorithm for solving the unconstrained LS problem. Numerical results are provided that show the efficiency of the proposed methods.

  • PDF

IMAGE RESTORATION BY THE GLOBAL CONJUGATE GRADIENT LEAST SQUARES METHOD

  • Oh, Seyoung;Kwon, Sunjoo;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.353-363
    • /
    • 2013
  • A variant of the global conjugate gradient method for solving general linear systems with multiple right-hand sides is proposed. This method is called as the global conjugate gradient linear least squares (Gl-CGLS) method since it is based on the conjugate gradient least squares method(CGLS). We present how this method can be implemented for the image deblurring problems with Neumann boundary conditions. Numerical experiments are tested on some blurred images for the purpose of comparing the computational efficiencies of Gl-CGLS with CGLS and Gl-LSQR. The results show that Gl-CGLS method is numerically more efficient than others for the ill-posed problems.