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A PRECONDITIONER FOR THE LSQR ALGORITHM

SAEED KARIMI, DAVOD KHOJASTEH SALKUYEH* AND FAEZEH TOUTOUNIAN

ABSTRACT. Iterative methods are often suitable for solving least squares
problems min||Az — blj2, where A € R™X" is large and sparse. The well
known LSQR algorithm is among the iterative methods for solving these
problems. A good preconditioner is often needed to speedup the LSQR con-
vergence. In this paper we present the numerical experiments of applying
a well known preconditioner for the LSQR algorithm. The preconditioner
is based on the AT A-orthogonalization process which furnishes an incom-
plete upper-lower factorization of the inverse of the normal matrix AT A,
The main advantage of this preconditioner is that we apply only one of
the factors as a right preconditioner for the LSQR algorithm applied to
the least squares problem min||Az — bj|2. The preconditioner needs only
the sparse matrix-vector product operations and significantly reduces the
solution time compared to the unpreconditioned iteration. Finally, some
numerical experiments on test matrices from Harwell-Boeing collection are
presented to show the robustness and efficiency of this preconditioner.
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1. Introduction

In this paper we consider the solution of linear least squares problem
mingegrn || Az — b2, (1)

where A € R™*", b € R™ are given, and m > n. We assume that A has full
column rank. The linear least squares problems may be encountered in many
scientific and engineering applications such as linear programming, geodetic sur-
vey problems, augmented Lagrange methods for computational fluid dynamics
and natural factor method in structural engineering analysis 2, 4, 5, 7, 8, 11].
For large scale sparse problems iterative solution methods are often preferable
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to direct methods. Paige and Saunders presented an iterative algorithm for solv-
ing the problem (1), namely the LSQR algorithm [10]. This method is based
on the bidiagonalization procedure of Golub and Kahan [6]. It is analytically
equivalent to the standard method of conjugate gradients, but possesses more
favorable numerical properties. It generates a sequence of approximations {zy}
such that the residual norm |jr,||2 decreases monotonically, where ry = b — Azi.
The LSQR algorithm generates two sets of vectors, vy, vo, ..., U, and uy, 4, ..., 4k
which form the orthonormal basis of the Krylov subspaces Ki(AT A,v;) and
Ki(AAT uy), respectively. We can easily show that the convergence rate of the
LSQR algorithm is related to the condition number of the matrix ATA. It is
known that the condition number of A7 A is the square of the condition number
of A, thus the LSQR algorithm may take many iterations to converge. A good
preconditioner is needed to speedup the LSQR convergence. In this paper we
observe that if we obtain an incomplete upper-lower factorization of (AT A)~! of
the form (AT A)~! ~ RRT”, then a preconditioner will be available for the LSQR
algorithm. Based on an incomplete inverse factorization of AT A which presented
in [1], we obtain an approximate factor R and use it as a right preconditioner for
(1). Applying this preconditioner requires only the matrix-vector products and
can be done in parallel. Sparsity in R is preserved by applying a (relative) drop
tolerance: fill elements are dropped if they are small according to some crite-
rion. Numerical experiments show that the preconditioner significantly reduces
the solution time compared to the unpreconditioned iteration.

Throughout this paper, we use the notation < . >3 for the usual inner product
in R™ and the associated norm denoted by ||.{l2. For two vectors = and y, we
define the following C-inner product:

<z,y >c=<Cz,y >2, (2)

where C' is symmetric positive definite matrix. The associated norm with respect
to this inner product is as follows:

Ilzlle = V<z,2>cC.

This paper is organized as follows. In section 2, a brief description of the
LSQR algorithm and the proposed preconditioner are given. In section 3, numer-
ical experiments on test matrices from Harwell-Boeing collection are presented
to show the robustness and efficiency of the preconditioning technique. Finally,
we give some concluding remarks in section 4.

2. The LSQR and the preconditioned LSQR algorithm

In this section, we recall some fundamental properties of the LSQR algorithm
(10], which is an iterative method for solving real linear systems of the form

Az =b, 3)

where A is a large sparse matrix of size m X n,m > n and z,b € R™.
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The LSQR algorithm uses an algorithm of Golub and Kahan [6], which was
stated as procedure Bidiag 1 in [10], to reduce A to the lower bidiagonal form.
The procedure Bidiag 1 can be described as follows.

Bidiag 1 (starting vector b; reduction to lower bidiagonal form):

Brur = b, ayv = ATy,

Bir1Ui+1 = Avi — aiuy ,
T 1= 1,2,.... (4)
Qit1Vit1 = A" Uip1 — Bit1vi

The scalars o; > 0 and 3; > 0 are chosen so that |u;]|2 = [lui]l2 = 1. With the
definitions
(031

B2 a2
Uk = [ul,uz, '-'auk])

Vi = [v1,v2, 0.y Uk),

-

B ok
Br+1

the recurrence relations (4) may be rewritten as

Ury1(Bre1) = b,
AV = Ug41 By,
ATUk+1 = VkBZ‘ + ak+1’l)k+16{+l.

As we observe the procedure Bidiag 1 will be stop if Av; —au; = 0 or AT —
Bi+1v; = 0, for some ¢. In exact arithmetic, we have U,? +1Uk+1 =1 and VkTVk =
I, where [ is the identity matrix.

For the procedure Bidiag 1, we have the following propositions. The proof
of these propositions are similar to those given in {12] for the classical Arnoldi
process.

Proposition 1. Suppose that k step of the procedure Bidiag 1 has been taken.
Then the vectors v1,v2, .., Vk, and u1,ug,..,ur are orthonormal basis of the
Krylov subspaces Ki(AT A, v1) and Ke(AAT,u;), respectively.

Proposition 2. The procedure Bidiag 1 will stop at step m if and only if
min{p, A} is m, where p is the grade of vi with respect to ATA and X is the
grade of uy with respect to AAT.

By using the procedure Bidiag 1 the LSQR algorithm constructs an approx-
imation solution of the form zy = Viyr which solves the least-squares problem,
min|{b — Az|2. The main steps of the LSQR algorithm can be summarized as
follows ( for more details see [10]).

Algorithm 1. The LSQR algorithm

Set o =0
Compute 3; = ||b”2, Uy = b/ﬂl,al = HAT’Lu”z, v = ATu1/a1
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Setwy=v, g1 =0, 1=
Fori=1,2,..., until convergence Do:

w = Av; — a;u;

Bit1 = w2

Uit1 = w/Bin

z= ATuigy — Biav

i = ||z|2

Vit1 = z/Qiq1

pi = (0} + B31)"?

¢i = pi/pi

5i = Biy1/pi

Oit1 = sitip1

Pi+1 = —Cittit1

¢ =cipi

Pit1 = 8is

Ti = Tio1 + (di/ ps)wi

Wity = Vig1 — (ir1/pi)wi

(Test of convergence rate)
EndDo.

The following proposition can be stated for the convergence rate of the LSQR
algorithm.

Proposition 3. Let xi be the approzimate solution obtained at the k-th step of
the LSQR algorithm, and let r, = b — Axg. Then the 2—norm of the residual
satisfies

Il <2(YE51) ol ®)

where & is the condition number of the matriz AT A and 1o is the initial residual.

Proof. This is a consequence of the fact that the LSQR algorithm are math-
ematically equivalent to the CGNR algorithm and for the conjugate gradient
method applied to the normal equations AT Az = ATb, the residual is reduced
according to (5)(see [3]). O

As we observe, the convergence rate of the LSQR algorithm is related to
the condition number of normal matrix ATA. The condition number should in
general be small to have fast convergence. However, in many application AT A
have quite large condition number. Consequently, it is important then to modify
equation (3). If we apply the LSQR algorithm to the transformed system

ARy =b), = Ry, (6)

where R is the factor of the inverse upper-lower factorization (AT A)~! = RR7,
then we reach to exact solution of the original system after one step. This is due
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to the fact that
(AR)T(AR) = RTATAR =1, (7)

where I is the identity matrix of order n. Therefore, if we obtain an incomplete
inverse upper-lower factorization (ATA)~! ~ RRT, then we can use the factor
R as a right preconditioner for the LSQR algorithm applied to the problem (1).
We start by recalling that since A has full column rank, then the n x n matrix
C = AT A is SPD and therefore it defines an inner product on R™ via (2). As
explained in [1], by using the set of unit basis vectors ey, ey, ...,en € R", we
can build a C-orthogonal (or C-conjugate) set of vectors z1, 23, ...,2n € R® by a
conjugate Gram-Schmidt process, i.e., a Gram-Schmidt process with respect to
the inner product (2). Written as a modified Gram-Schmidt process, the (right-
looking) algorithm starts by setting z; = e;, j = 1,2,...,n and then performs
the following nested loop:
by — S I B2ATA (8)
< 25,25 P AT A
where j = 1,2,...,n—~1and ¢ = j + 1,..,n. Letting Z = [21,22,...,2,] and
D = diag(d;,dy, ...,ds) with dj =< zj,z; >47 4, We obtain the inverse upper-
lower factorization

(ATA)"! = ZD™ 127, ©)

By noting that D is diagonal with entries d; = || Az;||Z > 0, we can define R =
ZD~'/2, So we have the inverse upper-lower factorization (AT A)~! = RRT.

A sparse preconditioner, an inverse approximate factorization (ATA)™! =
RRT, can be obtained by carrying out the updates in the AT A-conjugation
process (8) incompletely. Given a drop tolerance 0 < 7 < 1, the entries of 2; are
scanned after each update and entries that are smaller than 7 in absolute value
are discarded. We denote by Z; the sparsified vectors and we set

Z = [2-1,2_2,...,2-”].
Letting D = diag(dy,dz, ...,dn) With d; = ||AZ;]|Z > 0, we have a sparse incom-
plete inverse factorization of AT A of the form
(ATA) '~ ZD-1ZT = (ZD~Y?)(D-1/2Z7) = RRT. (10)

The upper triangular matrix R is an approximate inverse factor that can be used
as a right preconditioner for LSQR algorithm applied to (6).
The algorithm can be summarized as follows (for more details see [1]).

Algorithm 2. C-orthogonalization Process

Let z; =¢;, j=1,2,..,n
For j=1,2,..,n—1Do:
Fori=3j+41,2,..,n Do
Zi =2~ (< Z,Zi >ara [ < Z, % >A7'A)2j
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Use a dropping strategy for the vector Z;
EndDo
dj = || 4%}
EndDo. _ o _ o
Set Z = (21,7, ..., Zn), D =diag(dy,ds, ...,d,), and R = ZD~/2,

Note that the construction of the preconditioner does not require forming
C = ATA explicitly. Indeed, in this algorithm, the main loop involves the
computation of the inner products

< Zj, 2 P AT A= ZjATAZ,' = (AZ]‘)TAZ', 1=7J.an, J=1,2,.,n—-1.

Hence, computing these multipliers in the algorithm involve only matrix-vector
products of the form AZ;, to be computed as a linear combination of the columns
of A corresponding to nonzero entries in Z;, and inner products of two sparse
vectors AZ; and AZ;. Typically, most of these products will be structurally
zero (that is,AZ; and AZ; have no zero entries in the same position) and the
corresponding update in Z; can be skipped. We mention that the preconditioner
is easily applied in parallel, since its application requires only matrix-vector
products.

The straightforward application of the LSQR algorithm to the linear system
(6) yields the following preconditioned version of the LSQR algorithm.

Algorithm 3. The LSQR algorithm with right preconditioning

Compute approximate inverse factor R by algorithm 2

Set yo =0

Compute 1 = [[bll2, u1 = b/B1, ;1 = ATus,on = |[RTq1l2, and v; = RTqy /ey
Set wy =v1, ¢1 =01, and p1 = oy

For i=1,2,..., until convergence Do:

pi = Rv;
w = Ap; — a;u;
Bit1 = {jw|2

Uit = W/fip1

Qi+1 = ATui+1

2= RTgi11 — Biyrv;
aiy1 = ||z]l2

Vi1 = 2/ 01

pi = (P} + B21)'
¢i = pi/ pi

§; = ,Bi+1/pi

Oir1 = SiQti41

Pi+1 = —CiCit1

¢i =cidi _

biy1 = 8ii

Yi = Yi1 + (#/pi)w;
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Wity = Vir1 — (Bi41/pi)wi
If |¢i+1| is small enough then compute z; = Ry;.
EndDo.

3. Numerical examples

All the numerical experiments presented in this section were computed in
double precision with some codes in the Fortran PowerStation on a PC Pentium
4, 256MHz. For the numerical experiments, we use some general matrices from
Harwell-Boeing collection [9]. These matrices with their generic properties were
shown in TABLE 1. This table gives, for each matrix, the order n and the
number of nonzero entries nnz, condition number estimation (Cond-Est) and
their application. We first consider the linear systems which their coefficient
matrices are presented in TABLE 1. For all the examples, the right hand side of
the system of equations were taken such that the exact solutionis z = [1,-++,1]T.
The stopping criterion

| b~ Az |2
IRAIP

was used and the initial guess was taken to be zero vector. Hereafter we use a
dagger (1) to indicate that there was no convergence in 25000 iterations. We
use the LSQR algorithm and the preconditioned LSQR (PLSQR) algorithms
for solving the linear sytems of equations. The numerical results are given in
TABLE 2. In columns 2 through 5 of TABLE 2 we give CPU times to compute
the preconditioner (P-time), CPU times for the iterations (Plts-time), T-time
(=P-time+PIts-time) of the PLSQR algorithm for convergence, and the number
of iterations (P-Its), respectively. In the two last columns of TABLE 2, the
number of iterations of unpreconditioned LSQR algorithm and its CPU times
for convergence are presented. For all the examples we used the drop tolerance
7 = 0.1 for discarding the entries of Z; that are smaller than 7 in absolute value.

Some observation can be posed based on these experimental results. From
the point of view of robustness, we see that the LSQR algorithm in conjunction
with the proposed preconditioner is a robust technique for solving the linear
system of equations. As TABLE 2 shows, in the all examples, the sum of setup
times to compute the preconditioner and CPU times for the iterations is al-
ways very less than the CPU times of the unpreconditioned LSQR algorithm.
We also observe that the unpreconditioned LSQR algorithm fails on matrices
SHERMANS3, SHERMANS5, ORSIRR1, SAYLR1, and has poor convergence on
the other matrices, but the PLSQR algorithm never fails and on these matrices
has reasonable convergence.

The rest of this section is devoted to solve large sparse least squares problems.
Again, three rectangular matrices are chosen from the Harwell-Boeing collection;
WELL1850 (1850 by 712 and nnz = 8758), ILLC1033 (1033 by 320 and nnz =
4732) and ILLC1850 (1850 by 712 and nnz = 8758). All the assumptions are as
the first part of the numerical examples except for matrix ILLC1033 the drop

<1077, (11)
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TABLE 1. Test problems information

| matrix [ n | nnz || Cond-Est | application
SHERMANTI }| 1000 | 3750 || 2.3e+04 | Oil reservoir simulation
SHERMANS | 5005 | 20033 || 6.9¢+16 | Oil reservoir simulation
SHERMAN4 || 1104 | 3786 || 7.2e+03 | Qil reservoir simulation
SHERMANS | 3312 | 20793 || 3.9¢+05 | Oil reservoir simulation
ADD20 2395 1 17319 | 1.8e+04 | circuit modelling
ORSIRRI1 1030 | 6858 || 1.0e+02 | Oil reservoir simulation
ORSIRR2 886 | 5970 || 1.7¢+05 | Oil reservoir simulation

HORI131 434 | 4710 || 1.3e+05 | Flow network problem
STEAM?2 600 | 13760 | 3.5e+06 | Enhanced oil recovery
SAYLR1 238 | 1128 | 1.6e+09 | Oil reservoir simulation
SAYLR3 1000 | 3750 || 1.0e+02 | Oil reservoir simulation
PDES0D 900 | 4380 || 2.9e+02 | Partial differential equation

PDE2961 2961 | 14585 || 9.5¢+02 | Partial differential equation

TABLE 2. Numerical results of the LSQR and PLSQR. algo-
rithms for the linear system of equations

Prec. LSQR Unpree. LSQR
matrix P-time } Plts-time [ T-time ] P-Its || It-time | Unp-Its
SHERMANI1 || 0.44 148 1.92 | 505 || 29.83 | 13494
SHERMANS3 9.28 16.04 25.32 | 1126 || 284.03 1
SHERMAN4 || 0.38 0.44 0.82 | 170 2.25 925
SHERMANS || 4.56 36.47 41.03 | 4268 || 198.72 1
ADD20 2.86 9.56 12.42 | 1573 |} 29.66 5224
ORSIRR1 0.77 10.05 10.82 | 2996 || 61.90 1
ORSIRR2 0.6 4.55 515 | 1424 || 49.1 23071
HOR131 0.33 3.63 3.96 | 2218 || 24.17 | 21455
STEAM2 0.16 0.01 0.17 10 0.33 184
SAYLR1 0.01 0.33 0.34 |} 217 || 13.01 ¥
SAYLR3 0.44 1.49 1.93 | 506 || 29.82 | 13487
PDE900 0.38 0.33 0.71 99 0.99 480
PDE2961 4.73 3.41 8.14 354 13.74 2004

tolerance 7 = 10™% was used. Numerical results are given in TABLE 3. As we
observe, the results are similar to those of TABLE 2. This table shows that the
PLSQR algorithm is more efficient than the LSQR algorithm for solving large
sparse least squares problems.
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TABLE 3. Numerical results for the least squares problems

Prec. LSQR Unprec. LSQR
matrix P-time | Plts-time | T-time | P-Its || It-time | Unp-Its
WELL1850 {| 0.39 0.5 0.89 140 1.37 405
ILLC1033 1.1 0.6 1.7 159 6.27 3108
ILLC1850 0.39 4.62 5.01 1227 5.49 1634

TABLE 4. Numerical results for the matrix TOLS4000

TOLS(:,nc) Prec. LSQR Unprec. LSQR
ne, nnz || P-time | Plts-time | T-time | P-Its || It-time | Unp-Its
800, 1106 j| 0.11 0.00 0.11 3 90.85 | 22195
900, 1912 0.11 0.66 0.77 138 || 11249 | 22636
1000, 2412 0.22 2.36 2.58 464 122.43 | 24190
1100, 2912 || 0.33 5.22 5.55 986 | 127.65 1
1200, 3412 || 0.44 9.39 0.83 | 1677 || 133.47 t
1300, 3912 || 0.44 15.05 15.49 | 2578 || 140.94 1

For the last part of this section we choose matrix TOLS4000 of order 4000
with 8784 nonzero entries from the Harwell-Boeing collection. Let TOLS(:,nc)
denotes a matrix of order n x nc containing nc first columns of TOLS4000. We
consider TOLS(:,nc) with different values of nc as the coefficient matrices of the
least squares problems. The numerical results are presented in TABLE 4. In
the first column of this table the number of columns of TOLS(:, n¢), i.e, nc and
the number of its nonzero entries are given. The rest of the assumptions are as
before. As shown, all least squares problems are solved in a relatively small num-
ber of iterations by using PLSQR algorithm, but the unpreconditioned LSQR
algorithm fails or has poor convergence. We also observe that the preconditioner
significantly reduces the solution time compared to the unpreconditionded iter-
ation.

4. Conclusion

We have presented the numerical experiments of a known preconditioner
which is obtained by means of AT A-orthogonalization process which furnishes an
incomplete upper-lower factorization of the inverse of the normal matrix AT A,
applied to the LSQR algorithm. Numerical results show that this precondi-
tioner is very effective to improve the convergence rate of the LSQR algorithm
and PLSQR algorithm is much better than the LSQR algorithm in the number
of iterations and CPU time.
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