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ITERATIVE ALGORITHMS FOR THE LEAST-SQUARES
SYMMETRIC SOLUTION OF AXB =C WITH A SUBMATRIX
CONSTRAINT?

MINGHUI WANG* AND YAN FENG

ABSTRACT. Iterative algorithms are proposed for the least-squares sym-
metric solution of AXB = F with a submatrix constraint. We charac-
terize the linear mappings from their independent element space to the
constrained solution sets, study their properities and use these properties
to propose two maftrix iterative algorithms that can find the minimum and
quasi-minimum norr solution based on the classical LSQR algorithm for
solving the unconstrained LS problem. Numerical results are provided that
show the efficiency of the proposed methods.
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1. Introduction

Denoted by R™*™ and SR™*™ the set of m x n real matrices and the set of
n X n real symmetric matrices, respectively. For any A € R™*", AT R(A), A,
| All2 and || A|| » present the transpose, range, Moore-Penrose generalized inverse,
Euclidian norm and Frobenius norm of A, respectively. A(i: §,k : ) represents
the submatrix of A containing the intersection of rows ¢ to j and columns & to
l. As a special case, A(:,j) is the jth column of A and A(4,:) the ith row of
A. For a vector a, a(i : j) is the vector containing the ith to jth elements. I,
denotes the unit matrix of order n x n and ez(«k) is the ith column of Iy, while
the ith column of I,, is simply denoted by e;. For any X € SR™*", we define a
following symmetry norm:

1Xlls =
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The well-known linear matrix equation AX B = C has been widely studied.
Inevitably, Moore-Penrose generalized inverses and some complicated matrix
decompositions such as canonical correlation decomposition (CCD) and general
singular value decomposition (GSVD) are involved. All these methods are direct
methods. With the increasing dimension of the system, direct methods face
many difficulties and become impractical, in which case, iterative methods play
an important role.

In [4,5], matrix iteration methods were given for solving AXB = C with
the symmetry constraint X7 = X. They are matrix-form CGLS method and
LSQR method, which can be obtained by applying the classical CGLS method[7]
and LSQR method|3] respectively to matrix LS problem minyx ||BXAT — C||p.
The matrix-form CGLS method can be easily derived from the classical CGLS
method applied on the vector-representation of the matrix LS using Kronecker
product. However, as well known, the condition number is squared when normal
equation is involved. This may lead to numerical instability. It is not easy to
derive the matrix-form LSQR method, which has favorable numerical properties.

Matrix equation peoblems with a submatrix constraint come from the ex-
pansion problem of subsystem|1] and are very important. Z. Peng, X. Hu and
L. Zhang[5] studied symmetric solutions and bisymmetric solutions of AX = B
with a principal submatrix constraint, but did not discuss the least-squares so-
lutions.

In this paper, we will discuss the least-squares symmetric solution of AXB =
C with arbitrary submatrix constraint. For sirplicity of expression, we only con-
sider the following leading principal submatrix constraint problem.

Given 4 € R™" B € R, C e R™X, X, € SR¥*F. Find the least-
squares solution for '

IAXB - C||lp =min, X € S (1)
with & = {X|X € SR™"™, X(1: k,1: k) = Xo}.

In fact, arbitrary principal submatrix constraint problem can transform into
the above problem. Furthermore, arbitrary submatrix constraint problem can
be similarly discussed.

Let So = {X|X € SR™™™, X(1: k,1: k) = 0}. Then

. o Xy 0 ~
plaxs=cie = g fa(( % §)+v)e-d|,
~ min layB—{c—af %o 9\ B\l .
YeSy 0 0 F
Let
X:(’gﬂ 8>,C=C—AXB. @)

Then the following result is obvious.
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Lemma 1. Suppose that X,C be denoted by (2). Then the general solution (1)
is X = X +Y, where Y is the general solution

Juin ||AYB ~ CllF. (3)

Therefore, in this paper, we only consider (1) with § = Sp. The remaining
part of paper is organized as follows. In Section 2, we characterize the symmetric
matrices with a leading principal submatrix constraint. In Section 3, we shortly
review the algorithm LSQR for min, || Mz~ f||, which is numerically very reliable
even if M is ill-conditioned. Our matrix iterative algorithms for (1} is proposed
in Section 4, based on the classical LSQR method. Numerical examples are
provided in Section 5 to show the efficiency of the algorithms.

2. Symmetric matrices with a leading principal submatrix constraint

A symmetric matrix with a leading principal submatrix constraint is uniquely
and linearly determined by its partial elements, which are called independent el-

ements. For any X = (z1,23, -+, %,) € R™*", define
zk41:m,1)
T
T2 2 .
vee(X) = . e R vec;(X) = zk+1:nk+1) ERN, (4)

zk+2:n,k+2)
Tn :
z(n,n)

where N = (n~ k){(n+k +1)/2.

Obviously, there is a one to one linear mapping from the independent ele-
ment space

veei(So) = {vec;(X)| X € So}
to the long-vector space
vee(So) = {vec(X)|X € So}.
Let F(n) be this linear mapping:
X €8p, vee(X)= F(n)vec;(X).

We call F(n) a symmetric constraint matrix of degree n with a leading principal
submatrix constraint. If n can be ignored without misunderstanding, F(n) will
be simply denoted by F.

Next we give the representations of F(n).

Theorem 1. Suppose that F € R*XN s g symmetric constraint matric of
degree 1 with o leading principol submatriz constraint. Then
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(1) F = (Fy;) is a block lower triangular matriz with

i<k,Fy= ( 0’“;(”;’“’ ),,F;j=0,(i%j);
o

i>k, Fy= ( 0<*‘—}i>i<i':1i+l) ),Fi,- =0,3 < j);
i>kj<k+1li#j,F;=ee "
N T
i2k+3,5>k+2,i#j,F -e:,e(r_fjifl) .
(2) FTF = diag(Ds,- -+ , Dy,), where
Di = 2L, (i < k); D; = diag(1,2, - - ,2) € RO-HDX(—i+1) ;5 1),

Proof. (1). For any X € Sp, when i <k,

_ O (0 -0 0 0 - 0 |
xz‘(i’(k-}-ln,a))ﬂ(o <o 0 In—-k 0 --- O)UCC'L(X).
when @ > k,
1) ( i”,f’ e(k+1:7,1)
i, ('I’L k)T
(4, 2) €ik x(k+1 n,2)
: YA
(3, k) egﬁk:f) a:(k+1:n,k)
N ORI eg";’” o(k+1:n,k+1)
T ] k+2) - (n -7
2( Dk + 2,k +2)
z(i,k+3) “(n rig)T
. € _po 2k+3:n,k+3)
z(4,i— 1) UV
(i n,4) e (i~ 1m0~ 1)
\ In_iv1z(i: n, i)
T T —ianT
”‘dzag( (n k) [ Enkk) Eﬁkkll) F egn #+2) ,In...i+1,0)ﬂec,,;(X)

= (Fal, 27" ;F'm O)WCC%(-X)

(2). Notice that F is column orthogonal. By simple computation, we know
that (2) is correct. O

From the properties and structure of F, by simple computation, we can
obtain that, for any X € SR™*"

Flvec(X) = veei(X).

Furthermore, for any X € R™*", Flyec(X) = Flvec(XT). Therefore, for any
X € Rrxn

Flvee(X) = Floee(X + XT) = vec;(X + X7T).
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This leads to the following result.

Theorem 2. Suppose that F € RVXN s g symmetric constraint matriz of
degree n with a leading principal submatriz constraint and Y € R™*"™. Then

Y+YT>

Flvee(Y) = vee; <

For any X € R™*™ we define
veei(X) = Pvec;(X),
where P = diag(p1,---,pn),

i=Mn-kk+1,(n—-kk+n-k)+1, i
v2/2, (=Kt (n—k)+(n—k-1)+1,.-- N
1, otherwise

bi =

that is , giving every independent element x;; a weight /2/2. Define F(n) as a
linear mapping from vée;(Sp) to vee(So):

X € Sp, vec(X) = F(n)vec,(X).
we call F(n) a symmetric constraint matrix of degree n with a leading prin-
cipal submatrix and minimum norm constraint. If n can be ignored without

misunderstanding, F(n) will be simply denoted by F.
From Theorem 1 and 2, we can easily obtain the following results.

Theorem 3. Suppose that F is o symmetric constraint matriz of degree n with
a leading principel submatriz and minimum norm constraint and F is defined
by Theorem 1. Then

() F=FP7Y (2) FTF =2Iy.

Theorem 4. Suppose that F is a symmetric constraint matriz of degree n with
a leading principel submatriz and minimum norm constraint and ¥ € R™*™,

Then .
Floee(Y) = vee (zl;—-y—> .
3. Algorithm LSQR

In the section, we briefly review the algorithm LSQR proposed by Paige
and Sauders|3] for solving the following lease squares problem:

in |Mz ~ fl2 (5)
with given M € R™*" and f € R™, whose normal equation is
MTMz =MTf. (6)

The LSQR algorithm is based on the bidiagonalization procedure of Golub and
Kahan(2],

MVi = UpaNe, MTUg = ViN{, ()
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where Vi = (v1,- - ,vx) and Ug4q = (u1, -+, ug+1) are orthogonal, and
(€3]
B2 o3
e N N
. (07 )07ﬁk+1)
(¢7
Bre+1

is a lower-bidiagonal matrix, When w; is preset, vy and the recursions that
generate v;41, uiy1, 1 =1,2, - are obtained with

B =MTuy, o =|tl2 v =0/a,
Uit1 = Mvi — oqiiy  Bigr = |Bigall,  wir = tig1/Bisa,
Vig1 = MTUi1 — Bigrvi, i1 = [Bigalla,  Vidr = Big1/ougr.
Tt is easy to verify that
u; € ki(MMT uy), v € ki(MTM, MTuy).
If we take uy = 7o/||Folla with 7y = f — Mxp, then
Kk = ki (MTM, MT7y) = span{vy,--- ,vx}.
We can write T = xo + Vi, yx € RF. So setting
Yx = arg min [|f — M(zo + Viy)|l2
yERF

gives the same sequence {z;} as CGLS. Let 81 = {|7o||2, then it follows from (7)
that

If = M(zo + Viy)ll2 = [Ur+1(Brer — Nxy)ll2 = l|Brer — Niylla- (8)
Therefore,
Y = arg 1in ||frer — Neyll2-
The LSQR method solves the optimization problem above and constructs

Viyr, iteratively, using the QR decomposition of the lower bidiagonal matrix Ny
and simultaneously transforming fpes,

pr e G
B . ‘. . Rk .
QpNy = Pk—-1 0, = ( 0 ) y Qk(ﬂlel) = C
k

A i

(&)
T\ Gt )
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This transformation can be easily done by Givens rotations as follows.

Set p1 = 1,¢1 = By, and for ¢ = 1,---, k, construct Givens rotation G; =
G & such that
8 ¢

¢ S Pi 0 & P b G ) '
8 —C Bit1 iy1 O 0 fiyr Gin
Clearly, the optimal solution is given by yj = R 'z and

f—Mz, = Uk+1Q£(§Tk+1€§c}ir+11)>-
Together with (7) and (8), we have
If = Mazgll2 = [Cerrl,  NMT(f — Max)ll2 = |arsieracel. (9)
We can choose |[MT(f — Mzy)|l2 = |agt1Cesick| < 7 as stop criteria, where

T > 0 is a small tolerance.
We rewrite the recursion form

Ty =zo + Viyk = To + Vlezlz;c = Gpzk,

where Gy, = Vkkal = (Gy-1,9k). Then g1 = v1/p1 and gk = (vg — Okgr—-1)/Pk
for k > 1. Thus

2k = g+ (Gr—1,9%) ( Z’Z: ) =21+ (kOk-

Define hy, = prgy. Then we have from the above formulas, hy = prg1 = vy,
k Ok41
Ty = Tp—1+ E—khk, hii1 = prs1(Vk+1 — Ok19k)/ Pet1 = Vit — p—:hk-

Theoretically, LSQR converges within at most n iterations if exact arith-
metic could be performed, where n is the length of z. In practice the iteration
number of LSQR may be larger than n because of the computational errors.
It was shown in [3] that LSQR is numerically more reliable even if M is ill-
conditioned.

We summarize the LSQR algorithm as follows.

Algorithm LSQR
(1) Initialization. ~
Brur = f,a1v1 = M uy, by = v, 20 = 0,(1 = B, pr = au.
(2) Iteration. For ¢ = 1,2,
(1) bidiagonalization
(@)Bip1uir1 = Mu; — oy
(b)air1vipr = MTuiq — Biy1v;
(ii) construct and use Givens rotation

Pi = \/51'2 + i2—|—1

¢i = Pi/ piy 8i = Biv1/piy 0ip1 = SiCiga
Pit1 = —Ciliy1, G = CiCsy Cip1 = Siy
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(iif) update z and h

T = Ti—1 + (G /pi) b

hit1 = vig1 — (6i41/pi)hi
(iv) check convergence.

It is well known that if the consistent system of linear equations Mz = f
has a solution z* € R(MT), then z* is the unique minimal norm solution of
Mz = f. So, if (6) has a solution z* € R(MTM) = R(MT), then z* is the
minimum norm solution of (5). It is obvious that zj generated by Algorithm
LSQR belongs to R(M7T) and this leads the following result.

Theorem 5. The solution generated by Algorithm LSQR is the minimum norm
solution of (5).

4. The guasi-minimum norm solution and minimum norm solution
for (1)

Since vec(AX B) = (BT ®A)vec(X), where ® denote the Kronecker product,
then we have vec(AXB) = (BT ® A)Fz and the problem (1) is equivalent to

Mz — flj2 = min, (10)
where
M= (BT @ AF e RN f = vec(C) € R™.

The vector iterations of LSQR will be rewritten into matrix form so that the
Kronecker product and F can be released. To this end, it is required to transform
the matrix-vector products of Mv and MTu back to a matrix-matrix form for
variant vectors v in the independent element space and u = vec(U) € R™,
Further, we must guarantee that matrix form of MTu belongs to Sp.

For any v € RN, let V € Sp satisfy vec;(V) = v. Then we have

mat(Mv) = mat((BT ® A)Fv) = mat((BT ® A)vec(V)) = AVB.
For any u € RI™, let U € R'*™ satisfy u = vec(U) and define

T
G=A"UBT, H:GZG,
7= 0 H(1:kk+1:n)
T\ Hk+1:n,1:k) HE+1l:nk+1:n) )’

Then we have
mat(MTu) = mat(FT(B ® AT Jvec(U))
= mat(FTvec(ATUBT)) = mat(FT FFlvec(Q))
= mat(FT Foec;(H)) = mat(FT Fveci(Z))
=27 — diag(Z).

Now we can give the following algorithm.



Iterative algorithms for the least-squares symmetric solution 9

Algorithm LSQR-M-BS
(1) Initialization.
Xo=0(€ R™™), B =|E|r, Ui =E/p,
G, =A"U;BT, T\ =(Gi+GT)/2,
Z—( 0 T :kk+1:n) )
YT TR41in,1:k) Tkh4+1ink+1:n) )
Vi =22y — diag(Z1), o1 =|Vills, Vi =Vi/a,
Hi =V, (=p, p=oa1.
(2) Iteration. For ¢ = 1,2,--.
Uiy1 = AV;B — o;U;,
Biv1 = Uinallr, Uiy1 = Uit1/Bisa
Giy1 = ATU BT, T =(Gis1 +GLY)/2,
P 0 Tit1(l:kk+1:n)
TN Tk +1:n,1:k) Tipnk+1:nk+1:n) )°
Vijr = 2Zi11 — diag(Zit1) — Bir1 Vi,
i = |Vigills, Vier = Vigr /s,
pi =[P+ B2y, ci=pi/ps, Si=Bix1/pi, Oip1 = siciq1,
Pit1 = —Ci0uiy1, G =G,  Git1 = 8ii,
Xi=Xi 1+ (G/pi)Hi,
Hipy = Vigr — (0i41/p:)Hy,
check convergence.

Remark 1. The solution obtained by LSQR-M-BS has minimum symmetry
norm, and therefor is called quasi-minimum norm solution.

Next, we discussed the method for minimum Frobenius norm solution. The
problem (1) is equivalent to

1Mz~ fll2 = min, (11)
where
M=B'®AF e R™N  f=vec(E)eR™.
Notice that = comes from vec;(X).
For any v € RY let V € Sp satisfy vec;(V) = v and define

V =V + (V2 - 1)diag(V).
Then we have
mat(Mv) = mat((B" @ A)Fvec;(V)) = mat((BT @ A)FP tvec;(V))
= mat((B" @ A)Fvec;(V)) = mat((BT ® A)vec(V))
= AVB.
For any u € R'™, let U € R>™ satisfy u = vec(U) and define

G+G7T 0 H(1l:k,k+1:n)
— AT T _ _ )
G=ATUB",H= 2 ’Z_<H(k+1:n,1:k) Hk+1:nk+1:n)
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Then we have
mat(MTu) = mat(FT (B ® AT )vec(U))
= mat(FTvec(ATUBT)) = mat(FT F Flvec(Q))
= mat(2vec;(H)) = mat(2vec;(Z)) = mat(2Pvec;,(Z))
=27 — (2 ~ V2)diag(2).
Now we can give the following algorithm.
Algorithm LSQRmin-M-BS
(1) Initialization.
Yo =0(€ R™™), B =||Elr, Ui =E/f,
Gy = ATU1BT, T = (Gl + G{)/Q,
7 = 0 T(1:k,k+1:n)
YT\ Tk+1:0,1:8) Tk+1:nk+1:n) )’
Vi =21+ Z] — (2—V2)diag(Z), o1 =|Vills, Vi =W/,
Hi=V, G=p, p=a.
(2) Iteration. For i =1,2,--- N
Vi = Vi + (V2 - 1)diag(Vi), Uip1 = AV;B — o;Us,
Bi+1 = Uirillp, Uisr = Uia/Biv1
Giy1 = ATU BT, Ty = (Giya +GEL)/2,
7o 0 Tivi(l:kk+1:m)
TN Tk +1:n,1:k) Tiak+1:nk+1:n) )’
Vitr = Zip1 + Zig1 — (2 = V2)diag(Ziy1) — Bir1 Vi,
& = Vigills, Vigr =Vipr/oupr,
pPi = V ﬁ? + ﬂ?—{—la
ci=pi/pi, i =Lit1/pi, bit1 = Siit1,
Pit1 = —Ciit1, G =i, Git1 = 8iCi,
Y= YTL'—.I + (Cz/pz)Hu
X; =Yi + (V2 - 1)diag(Yy),
Hiy1 = Viy1 — (01 /pi) Hi,
check convergence.
Remark 2. From the transforming process from (1) to (11), Y; obtained by Al-
gorithm LSQRmin-M-BS and approximate solution X; of (1) satisfy vec;(¥;) =
véci(X;). So we have X; = Y; + (v2 — 1)diag(Y;).
Remark 3. Algorithm LSQRmin-M-BS can compute Y with minimal [Jvec;(Y)||2,
and hence X with minimal ||vec;(X)||2. Because | X|% = 2|vec;(X)|3, Algo-
rithm LSQRmin-M-BS can compute the minimum Frobenius norm solution of
(1).
5. Numerical examples

In this section, we present a numerical example to illustrate the efficiency
of Algorithm LSQRmin-M-BS.
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Example 1. Let

3 =200 0 0 -3 70l
~51 11 3
0 0 0 14 0
A: 7B: O 0 0 [}
1 13 0 0 -21
0 2 0 0 17 40 —l7
9 23 -—19
g _14 _04 1 2 -1
=15 1 1 [Xo=| 2 03]
-1 3 -2
-7 0 0

where N = 9, rank(M) = 1.

With 15 iterations, Algorithm LSQRmin-M-BS obtains the minimum Frobe-
nius norm solution

1.006000000 2.06000000 —1.00000000 —6.453694647911
2.00000000 1] 3.00000000 5.583496558026
X] 5 == —1.00000000 3.00000000 —2.00000000 0.00000000000001

—6.453694647911  5.583496558026  0.00000000000001 —18.131131672281
5.942629102890  —4.373544972661 0.000000000000 16.837520191766

5.942629102890
~4.373544972661
0.600000000000
16.837529191766
~15,189156071512
with
IAX15B — C|| = 1.627240099172723¢ + 003.

These results are the same as those obtained by direct method.
In Figure 1, we plot convergence cufve of normal equation error

= \MT(Mvec,(Xg) = f)lle-

Above example, as well as more other examples, show that our algorithms
are efficient.
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