References
- Ake Bjork, Numerical methods for least squares problems, SIAM, 1996.
- S. Y. Chung, S. Y. Oh, S. J. Kwon, Restoration of blurred images by global least squares method, J. of Chungcheong Math. Soc. 22 (2009), 177-186.
- P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, 2010.
- A. K. Jain, Fundamental of digital image processing, Prentice-Hall, Engelwood Cliffs, NJ, 1989.
- K. Jbilou, A. Messaoudi, and H. Sadok, Global FOM and GMRES algorithms fo matrix equations, Applied Numerical Mathematics, 31 (1999), 49-63. https://doi.org/10.1016/S0168-9274(98)00094-4
- M. K. Ng, R. H. Chan, and W. C. Tang, A fast algorithm for deblurring models with neumann boundary conditions, SIAM J. Sci. Comp. 21 (1999), no. 3, 851-866. https://doi.org/10.1137/S1064827598341384
- S. Y. Oh, S. J. Kwon, and J. H. Yun, A method for structured linear total least norm on blind deconvolution problem, Journal of Applied Mathematics and Computing 19 (2005), 151-164.
- C. C. Paige, M. A. Saunders, LSQR: An algorithm for sparse Linear equations and sparse least squares, ACM Trans. on Math. Soft. 8 (1982), no. 1, 43-71. https://doi.org/10.1145/355984.355989
- C. C. Paige, LSQR: Sparse Linear Equations and Least Squares Problems, ACM Trans. on Math. Soft. 8 (1982), no. 2, 195-209. https://doi.org/10.1145/355993.356000
- D. K. Salkuyeh, CG-type algorithms to solve symmetric matrix equations, Appl. Math. Comput. 172 (2006), 985-999. https://doi.org/10.1016/j.amc.2005.03.003
- V. B. Surya Prasath, Arindama Singh, A hybrid convex variational model for image restoration, Appl. Math. Comput. 215 (2010), 3655-3664. https://doi.org/10.1016/j.amc.2009.11.003
- C. M. Thompson and L. Shure, Image processing toolbox for use with MATLAB, The MathWorks, Inc., 1993.
- F. Toutounian and S. Karimi, Global Least squares method (Gl-LSQR) for solving general linear system with several right-hand sides, Appl. Math. Comput. 178 (2006), 452-460. https://doi.org/10.1016/j.amc.2005.11.065
Cited by
- A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION vol.29, pp.1, 2016, https://doi.org/10.14403/jcms.2016.29.1.59
- PRECONDITIONED GL-CGLS METHOD USING REGULARIZATION PARAMETERS CHOSEN FROM THE GLOBAL GENERALIZED CROSS VALIDATION vol.27, pp.4, 2014, https://doi.org/10.14403/jcms.2014.27.4.675
- CHOOSING REGULARIZATION PARAMETER BY GLOBAL L-CURVE CRITERION vol.30, pp.1, 2013, https://doi.org/10.14403/jcms.2017.30.1.117
- PERFORMANCE OF Gℓ-PCG METHOD FOR IMAGE DENOISING PROBLEMS vol.35, pp.3, 2013, https://doi.org/10.14317/jami.2017.399
- A permissible region strategy for fluorescence molecular tomography vol.26, pp.6, 2013, https://doi.org/10.1007/s10043-019-00520-8
- MULTI-PARAMETER TIKHONOV REGULARIZATION PROBLEM WITH MULTIPLE RIGHT HAND SIDES vol.33, pp.4, 2013, https://doi.org/10.14403/jcms.2020.33.4.505