DOI QR코드

DOI QR Code

A NOTE ON THE WEIGHTED q-HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR WITH RESPECT TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Araci, Serkan (University of Gaziantep, Faculty of Science and Arts, Department of Mathematics) ;
  • Acikgoz, Mehmet (University of Gaziantep, Faculty of Science and Arts, Department of Mathematics)
  • Received : 2012.03.16
  • Accepted : 2012.12.07
  • Published : 2013.05.30

Abstract

The essential aim of this paper is to define weighted $q$-Hardylittlewood-type maximal operator by means of $p$-adic $q$-invariant distribution on $\mathbb{Z}_p$. Moreover, we give some interesting properties concerning this type maximal operator.

Keywords

References

  1. T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic p-adic invariant measure on $\mathbb{Z}_p$, Russian Journal of Mathematical Physics, Vol. 19, No. 2, 2012, 193-196. https://doi.org/10.1134/S1061920812020057
  2. T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic q-Volkenborn distribution on ${\mu}_q$, Appl. Math. Comp. 187 (2007), 266-271. https://doi.org/10.1016/j.amc.2006.08.123
  3. T. Kim, S. D. Kim, D.W. Park, On Uniformly differntiabitity and q-Mahler expansion, Adv. Stud. Contemp. Math. 4 (2001), 35-41.
  4. T. Kim, q-Volkenborn integration, Russian J. Math. Phys. 9 (2002) 288-299.
  5. T. Kim, On a q-analogue of the p-adic Log Gamma functions and related integrals, Journal of Number Theory 76 (1999), 320-329. https://doi.org/10.1006/jnth.1999.2373
  6. T. Kim, Note on Dedekind-type DC sums, Advanced Studies in Contemporary Mathematics 18(2) (2009), 249-260.
  7. T. Kim, A note on the weighted Lebesgue-Radon-Nikodym Theorem with respect to p-adic invariant integral on $\mathbb{Z}_p$, J. Appl. Math. & Informatics, Vol. 30(2012), No. 1, 211-217. https://doi.org/10.14317/JAMI.2012.30.1_2.211
  8. T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math Phys. 10 (2003) 91-98.
  9. L-C. Jang, On the q-extension of the Hardy-littlewood-type maximal operator related to q-Volkenborn integral in the p-adic integer ring, Journal of Chungcheon Mathematical Society, Vol. 23, No. 2, June 2010.
  10. K. Hensel, Theorie der Algebraischen Zahlen I. Teubner, Leipzig, 1908.
  11. N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Springer-Verlag, New York Inc, 1977.