References
-
T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic p-adic invariant measure on
$\mathbb{Z}_p$ , Russian Journal of Mathematical Physics, Vol. 19, No. 2, 2012, 193-196. https://doi.org/10.1134/S1061920812020057 -
T. Kim, Lebesgue-Radon-Nikodym theorem with respect to fermionic q-Volkenborn distribution on
${\mu}_q$ , Appl. Math. Comp. 187 (2007), 266-271. https://doi.org/10.1016/j.amc.2006.08.123 - T. Kim, S. D. Kim, D.W. Park, On Uniformly differntiabitity and q-Mahler expansion, Adv. Stud. Contemp. Math. 4 (2001), 35-41.
- T. Kim, q-Volkenborn integration, Russian J. Math. Phys. 9 (2002) 288-299.
- T. Kim, On a q-analogue of the p-adic Log Gamma functions and related integrals, Journal of Number Theory 76 (1999), 320-329. https://doi.org/10.1006/jnth.1999.2373
- T. Kim, Note on Dedekind-type DC sums, Advanced Studies in Contemporary Mathematics 18(2) (2009), 249-260.
-
T. Kim, A note on the weighted Lebesgue-Radon-Nikodym Theorem with respect to p-adic invariant integral on
$\mathbb{Z}_p$ , J. Appl. Math. & Informatics, Vol. 30(2012), No. 1, 211-217. https://doi.org/10.14317/JAMI.2012.30.1_2.211 - T. Kim, Non-archimedean q-integrals associated with multiple Changhee q-Bernoulli Polynomials, Russ. J. Math Phys. 10 (2003) 91-98.
- L-C. Jang, On the q-extension of the Hardy-littlewood-type maximal operator related to q-Volkenborn integral in the p-adic integer ring, Journal of Chungcheon Mathematical Society, Vol. 23, No. 2, June 2010.
- K. Hensel, Theorie der Algebraischen Zahlen I. Teubner, Leipzig, 1908.
- N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Springer-Verlag, New York Inc, 1977.