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ON THE PURE IMAGINARY QUATERNIONIC LEAST

SQUARES SOLUTIONS OF MATRIX EQUATION†

MINGHUI WANG AND JUNTAO ZHANG∗

Abstract. In this paper, according to the classical LSQR algorithm for
solving least squares (LS) problem, an iterative method is proposed for
finding the minimum-norm pure imaginary solution of the quaternionic

least squares (QLS) problem. By means of real representation of quaternion
matrix, the QLS’s correspongding vector algorithm is rewrited back to
the matrix-form algorthm without Kronecker product and long vectors.
Finally, numerical examples are reported that show the favorable numerical

properties of the method.
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1. Introduction

Let R, Q = R+Ri+Rj+Rk and IQm×n denote the real number field, the
quaternion field and the set of all m × n pure imaginary quaternion matrices,
respectively, where i2 = j2 = k2 = −1, ij = −ji = k. For any x = x1 + x2i +
x3j + x4k ∈ Q, the conjugate of quaternion x is x̄ = x1 − x2i− x3j − x4k.

Let Fm×n denotes the set of m× n matrices on F . For any A ∈ Fm×n, AT ,
Ā and AH present the transpose, conjugate and conjugate transpose of A, re-
spectively; A(i :j, k : l) represents the submatrix of A containing the intersection
of rows i to j and columns k to l.

For any A = (a1, ..., an) ∈ Fm×n, define vec(A) = (aT1 , ..., a
T
n )

T . The in-
verse mapping of vec(·) from Rmn to Rm×n which is denoted by mat(·) satisfies
mat(vec(A)) = A.
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Quaternions and quaternion matrices have many applications in quaternionic
quantum mechanics and field theory. Based on the study of [5], we also discuss
the quaternion matrix equation

AX = B (1)

where A and B are given matrices of suitable size defined over the quaternion
field. In this paper, we will derive an operable iterative method for finding
the minimum-norm pure imaginary solution of the QLS problem, which is more
appropriate to large scale system.

Many people have studied the matrix equation (1) and others constrained
matrix equation, see [1, 2, 12, 13, 14, etc.]. For the real, complex and quaternion
matrix equations, there are many results, see [3, 4, 5, 6, 7, 8, 9, 10, etc.].

In [5], the least squares pure imaginary solution with the least norm was given
of the quaternion matrix equation (1) by using the complex representation of
quaternion matrix and the Moore-Penrose. For A = A1 + A2j ∈ Qs×m, B =

B1 +B2j ∈ Qs×n, let Q =

(
iA1 −A2 iA2

−iA2 A1 iA1

)
, Q1 = Re(Q), Q2 = Im(Q),

E1 =
(
Re(B1) Re(B2) Im(B1) Im(B2)

)T
and R1 = (I3m −Q+

1 Q1)Q
T
2 ,

H1 = R+
1 + (I2s −R+

1 R1)Z1Q2Q
+
1 Q

+
1

T
(I3m −QT

2 R
+
1 ),

Z1 = (I2s + (I2s −R+
1 R1)Q2Q

+
1 Q

+
1

T
QT

2 (I2s −R+
1 R1))

−1.

And the set of solution JL is expressed as

JL =

X

Im(X1)
Re(X2)
Im(X2)

= (Q+
1 −HT

1 Q2Q
+
1 , H

T
1 )E1 + (I3m −Q+

1 Q1 −R1R
+)Y


where Y is an arbitrary matrix of appropriate size. However, the method is
not easy to realize in large scale system which motivated us to find an operable
iterative method. Also Au-Yeung and Cheng in [6] studied the pure imaginary
quaternionic solutions of the Hurwitz matrix equations.

Firstly, let us review the real least squares problem. In the LS problem, given
A ∈ Rm×n and B ∈ Rn×p for finding a real matrix X so that

min = ∥AX −B∥F , (2)

where ∥ · ∥F denotes the Frobenius norm. And the unique minimum-norm solu-
tion of the LS problem given by

XLS = A†B,

where A† denotes the Moore-Penrose of A.
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2. Preliminary

For any A = A1 + A2i + A3j + A4k ∈ Qm×n and Al ∈ Rm×n(l = 1, 2, 3, 4),
define

AR =


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

 ∈ R4m×4n. (3)

The real matrix AR is known as real representation of the quaternion matrix
A. The set of all matrices shaped as (3) is denoted by Qm×n

R . Obviously, the

relation between Qm×n and Qm×n
R is one-to-one correspondence.

Let

Pt =


It 0 0 0
0 −It 0 0
0 0 It 0
0 0 0 −It

 , Qt =


0 −It 0 0
It 0 0 0
0 0 0 It
0 0 −It 0

 ,

St =


0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

 , Rt =


0 0 −It 0
0 0 0 −It
It 0 0 0
0 It 0 0

 .

Then Pt, Qt, Rt, St are unitary matrices, and by the definition of real repre-
sentation, we can obtain the following results which given by T. Jang [4] and M.
Wang [8].

Proposition 2.1. Let A,B ∈ Qm×n, C ∈ Qn×s, α ∈ R. Then

(a) (A+B)R = AR +BR, (αA)R = αAR, (AC)R = ARCR;

(b) Q2
m = R2

m = S2
m = −I4m, QT

m = −Qm, RT
m = −Rm, ST

m = −Sm;

(c) RmQm = Sm, QmSm = Rm, SmRm = Qm;

(d) QmRm = ST
m, SmQm = RT

m, RmSm = QT
m;

(e) QT
mARQn = QmARQT

n = AR, RT
mARRn = RmARRT

n = AR,

ST
mARSn = SmARST

n = AR.

Remark 2.1. Form above property (a), we know that the mapping Qm×n →
Qm×n

R is an isomorphism.

Theorem 2.2. For any V ∈ R4m×n, (V,QmV,RmV, SmV ) is a real represen-
tation matrix of some quaternion matrix.

Based on the definition of quaternion matrix norm in [8], which denoted
by ∥ · ∥(F ) can be proved a natural generality of Frobenius norm for complex
matrices, it has the following properties:

(1) ∥A∥(F ) = 1/2∥AR∥F ;
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(2) ∥AB∥(F ) ≤ ∥A∥(F )∥B∥(F );

(3) ∥A∥(F ) =
√∑

|aij |2.

Then we review the LSQR algorithm proposed in [11] for solving the following
LS problem:

min
x∈Rn

∥Mx− f∥2 (4)

with given M ∈ Rm×n and vector f ∈ Rm, whose normal equation is

MTMx = MT f. (5)

The algorithm is summarized as follows.

Algorithm LSQR

(1) Initialization.
β1u1 = f, α1v1 = MTu1, h1 = v1,
x0 = 0, ζ̄1 = β1, ρ̄1 = α1.

(2) Iteration. For i = 1, 2, · · ·
(i) bidiagonalization

(a) βi+1ui+1 = Mvi − αiui

(b) αi+1vi+1 = MTui+1 − βi+1vi
(ii) construct and use Givens rotation

ρi =
√
ρ̄2i + β2

i+1

ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1

ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i
(iii) update x and h

xi = xi−1 + (ζi/ρi)hi

hi+1 = vi+1 − (θi+1/ρi)hi

(iv) check convergence.

We can choose

∥MT (f −Mxk)∥2 = |αk+1ζ̄k+1ck| < τ

as convergence criteria, where τ > 0 is a small tolerance. Obviously, there is no
storage requirement for all the vector vi and ui.

And we can easily obtain the following theorem that if linear equation (5) has
a solution x∗ ∈ R(MTM) ∈ R(MT ), then x∗ generated by Algorithm LSQR is
the minimum norm solution of (4). So we can have the solution generated by
Algorithm LSQR is the minimum-norm solution of problem (4). Specifically, it
was shown in [11] that this method is numerically more reliable even if M is
ill-conditioned.
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3. The matrix-form LSQR method for QLS problem

In this section, we give the definition of quaternionic least squares (QLS)
problem on the basis of quaternion matrix norm which is shown in section 2, for

min
X∈Qn×p

∥AX −B∥(F ) (6)

with given matrices A ∈ Qm×n and B ∈ Qm×p. Then we can find problem (6)
is equivalent to

min
X∈Qn×p

R

∥ARX −BR∥F (7)

which is a constrained LS problem with given matrices AR ∈ Qm×n
R and BR ∈

Qm×p
R .
Next, we will deduce the iterative method to find the pure imaginary quater-

nionic solution of the QLS problem (1). For any X ∈ IQn×p
R ,

X =


0 −X2 −X3 −X4

X2 0 −X4 X3

X3 X4 0 −X2

X4 −X3 X2 0

 ∈ R4n×4p,

define

veci(X) = vec(X(n+1:4n, 1:p)) = vec

 X2

X3

X4

 .

Obviously, there is an one to one linear mapping from the long-vector space
vec(R4n×4p) to the independent parameter space veci(R

3n×p). Let F denote the
pure imaginary quaternionic constrained matrix which defines linear mapping
from veci(R

3n×p) to vec(R4n×4p), that is

vec(X) = Fveci(X), X ∈ R4n×4p.

Theorem 3.1. Suppose F is a pure imaginary quaternionic constrained matrix,
then

F = T



On×3np

(I3n, O3n×3n(p−1))
On×3np

(O3n×3n, I3n, O3n×3n(p−2))
...

On×3np

(O3n×3n(p−1), I3n)


∈ R16np×3np and FTFF† = FT ,

where

T =


diag(I4n, ..., I4n)
diag(Q4n, ..., Q4n)
diag(R4n, ..., R4n)
diag(S4n, ..., S4n)

 ∈ R16np×4np.
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Proof. First, we know

vec(X) =



vec


0
X2

X3

X4


vec


−X2

0
X4

−X3


vec


−X3

−X4

0
X2


vec


−X4

X3

−X2

0





=



vec


0
X2

X3

X4


vec

Qn


0
X2

X3

X4




vec

Rn


0
X2

X3

X4




vec

Sn


0
X2

X3

X4






=


I

I ⊗Qn

I ⊗Rn

I ⊗ Sn

 vec


0
X2

X3

X4

 = T vec


0
X2

X3

X4


and

vec


0
X2

X3

X4

 =



On×3np

(I3n, O3n×3n(p−1))
On×3np

(O3n×3n, I3n, O3n×3n(p−2))
...

On×3np

(O3n×3n(p−1), I3n)


veci(X).

Hence, we have

vec(X) = T



On×3np

(I3n, O3n×3n(p−1))
On×3np

(O3n×3n, I3n, O3n×3n(p−2))
...

On×3np

(O3n×3n(p−1), I3n)


4np×3np

veci(X).

Therefore, let
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F = T



On×3np

(I3n, O3n×3n(p−1))
On×3np

(O3n×3n, I3n, O3n×3n(p−2))
...

On×3np

(O3n×3n(p−1), I3n)


∈ R16np×3np,

and from the above we have

vec(X) = Fveci(X).

Then because of

FTF =

 O3np×n,

(
I3n

O3n(p−1)×3n

)
, O3np×n,

 O3n×3n

I3n
O3n(p−2)×3n

 , ..., O3np×n,

(
O3n(p−1)×3n

I3n

) )
· T TT ·



On×3np

(I3n, O3n×3n(p−1))
On×3np

(O3n×3n, I3n, O3n×3n(p−2))
...

On×3np

(O3n×3n(p−1), I3n)


= 4

[(
I3n O3n×3n(p−1)

O3n(p−1)×3n O3n(p−1)×3n(p−1)

)
+

(
O O O
O I3n O
O O O

)
+(

I3n O3n×3n(p−1)

O3n(p−1)×3n O3n(p−1)×3n(p−1)

)]
= 4I3np,

we can know that F is of full column rank and

(FTFF†)T = (FF†)T (FT )T = FF†F = F ,

that is
FTFF† = FT .

�
Because

∥AX −B∥2(F ) =
1

4
∥ARXR −BR∥2F

=
1

4
∥(I ⊗AR)vec(XR)− vec(BR)∥22

=
1

4
∥(I ⊗AR)Fveci(X

R)− vec(BR)∥22,

where M ⊗ N denote the Kronecker product of matrices M and N , the QLS
problem (6) is equivalent to

min
x∈R3np

∥Mx− f∥2 (8)
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with

M = (I4p ⊗AR)F ∈ R16mp×3np,

f = vec(BR) ∈ R16mp.
(9)

Now, we will apply Algorithm LSQR to problem (8) and the vector iteration
of it will be transformed into matrix form so that the Kronecker product and F
can be released. Then we transform the matrix-vector product of Mv and MTu
back to a matrix-matrix form so as to let vector v and u be matrix V and U
respectively, which required in Algorithm LSQR.

Let mat(α) represent the matrix form of a vector α, For any v ∈ R3np and

u = vec(U) ∈ R16mp, where U ∈ Qm×p
R . Let

Ṽ = mat(v) = vec−1(v) ∈ R3n×p, ¯̃V =

(
On×p

Ṽ

)
,

V = ( ¯̃V,Qn
¯̃V,Rn

¯̃V, Sn
¯̃V ) ∈ Qn×p

R .

Then we have

mat(Mv) = mat((I ⊗AR)Fv)

= mat((I ⊗AR)Fvec(Ṽ ))

= mat((I ⊗AR)Fveci(V ))

= mat((I ⊗AR)vec(V ))

= ARV,

mat(MTu) = mat
(
FT (I ⊗ART

)u
)

= mat
(
FT (I ⊗ART

)vec(U)
)

= mat
(
FTFF†vec(ART

U)
)

= mat
(
4I3npveci(A

RT
U)

)
= Z(n+ 1 : 4n, 1 : p)

where

Z = 4ART

U ∈ Qn×p
R .

Therefore, we can get the following algorithm.

Algorithm LSQR-P.

(1) Initialization
X0 = O ∈ R3n×p, β1 = ∥BR∥, U1 = BR/β1,

Z1 = 4ART
U1, V̄1 = Z1(n+1:4n, 1:p),

α1 = ∥V̄1∥F , Ṽ1 = V̄1/α1,
¯̃V1 =

(
On×p

Ṽ1

)
,

V1 = ( ¯̃V1, Qn
¯̃V1, Rn

¯̃V1, Sn
¯̃V1),
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H1 = Ṽ1, ζ̄1 = β1, ρ̄1 = α1.
(2) Iteration. For i = 1, 2, ...

(i) bidiagonalization
(a) Ūi+1 = ARVi − αiUi,

βi+1 = ∥Ūi+1∥F , Ui+1 = Ūi+1/βi+1;

(b) Zi+1 = 4ART
Ui+1,

V̄i+1 = Zi+1(n+1:4n, 1:p)− βi+1V̄i,

αi+1 = ∥V̄i+1∥F , Ṽi+1 = V̄i+1/αi+1,
¯̃Vi+1 =

(
On×p

Ṽi+1

)
,

Vi+1 = ( ¯̃Vi+1, Qn
¯̃Vi+1, Rn

¯̃Vi+1, Sn
¯̃Vi+1);

(ii) construct and use Givens rotation

ρi =
√
ρ̄2i + β2

i+1,

ci = ρ̄i/ρi, si = βi+1/ρi, θi+1 = siαi+1,
ρ̄i+1 = −ciαi+1, ζi = ciζ̄i, ζ̄i+1 = siζ̄i;

(iii) update X and H
Xi = Xi−1 + (ζi/ρi)Hi,

Hi+1 = Ṽi+1 − (θi+1/ρi)Hi;
(3) check convergence. Output

X = Xi(1 :n, :)i+Xi(n+ 1:2n, :)j +Xi(2n+ 1:3n, :)k.

Algorithm LSQR-P can compute the minimum-norm solution x = veci(X
R)

of (8), that is

min = ∥veci(XR)∥2.
Again,

∥X∥2(F ) = 1/4∥XR∥2F = ∥veci(XR)∥22,
so we have the following result.

Theorem 3.2. The solution generated by Algorithm LSQR-P is the minimum-
norm solution of problem (6).

4. Numerical examples

In this section, we give three examples to illustrate the efficiency and inves-
tigate the performance of Algorithm LSQR-P which shown to be numerically
reliable in various circumstances. All functions are defined by Matlab 7.0.

Example 4.1. Given [m,n, p] = N , A = A1+A2i+A3j+A4k, X = X1+X2i+
X3j + X4k, B = AX, with A1, A2, A3, A4 defined by rand(m,n) respectively.
Given X1 = zeros(n, p) and X2, X3, X4 defined by rand(n, p) respectively. Then
Fig. 4.1 plots the relation between error εk = log10(∥AX−B∥(F )) and iteration
number K.

Notice that in the above case, the equation AX = B is consistent and has a
unique solution. From Fig. 4.1 we find our algorithm is effective.
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Fig. 4.1 The relation between error εk and iterative number K with different N

Example 4.2. Given [m,n, p] = N , A = A1 + A2i + A3j + A4k, B = B1 +
B2i + B3j + B4k, with A1, A2, A3, A4, B1, B2, B3, B4 defined by rand(m,n) re-
spectively. Let ηk = log10(∥MT (Mx − f)∥2) where M,f defined by (9). Then
Fig. 4.2 plots the relation between error ηk and iteration number K.
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Fig. 4.2 The relation between error ηk and iterative number K with different N

Notice that in the above case, the equation AX = B is not consistent and we
use ηk = ∥MT (f −Mxk)∥2 = |αk+1ζ̄k+1ck| < τ = 10−12 as convergence criteria.
From Fig. 4.2, we also find our algorithm work well.

Example 4.3. Given m = n = p = 10, A = A1 + A2i + A3j + A4k, X =
X1 + X2i + X3j + X4k, B = AX, with A1 = hilb(m), A2 = pascal(m), A3 =
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ones(m,n), A4 = pascal(m). Given X1 = zeros(n, p) and X2, X3, X4 defined
by rand(n, p) respectively. In this case, the condition number of M is 3.9927×
109, therefore this system is ill-conditioned. Then Fig. 4.3 plots the relation
between error εk = log10(∥AX − B∥(F )), ηk = log10(∥X − Xk∥F /∥X∥F ) and
iteration number K.

0 500 1000 1500 2000
−10
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−6

−4

−2

0

2

K

η
k

ε
k

Fig. 4.3 The relation between error ηk, εk and iterative number K

Notice that the equation (1) is consistent and has a unique solution. The
algorithm performance is not very well when the system very ill-conditioned.
From Fig. 4.3 we find our algorithm is also effective.
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