• 제목/요약/키워드: Internet Novel

검색결과 1,006건 처리시간 0.022초

Jellyfish: A Conceptual Model for the AS Internet Topology

  • Siganos Georgos;Tauro Sudhir Leslie;Faloutsos Michalis
    • Journal of Communications and Networks
    • /
    • 제8권3호
    • /
    • pp.339-350
    • /
    • 2006
  • Several novel concepts and tools have revolutionized our understanding of the Internet topology. Most of the existing efforts attempt to develop accurate analytical models. In this paper, our goal is to develop an effective conceptual model: A model that can be easily drawn by hand, while at the same time, it captures significant macroscopic properties. We build the foundation for our model with two thrusts: a) We identify new topological properties and b) we provide metrics to quantify the topological importance of a node. We propose the jellyfish as a model for the inter-domain Internet topology. We show that our model captures and represents the most significant topological properties. Furthermore, we observe that the jellyfish has lasting value: It describes the topology for more than six years.

Internet Roundtrip Delay Prediction Using the Maximum Entropy Principle

  • Liu, Peter Xiaoping;Meng, Max Q-H;Gu, Jason
    • Journal of Communications and Networks
    • /
    • 제5권1호
    • /
    • pp.65-72
    • /
    • 2003
  • Internet roundtrip delay/time (RTT) prediction plays an important role in detecting packet losses in reliable transport protocols for traditional web applications and determining proper transmission rates in many rate-based TCP-friendly protocols for Internet-based real-time applications. The widely adopted autoregressive and moving average (ARMA) model with fixed-parameters is shown to be insufficient for all scenarios due to its intrinsic limitation that it filters out all high-frequency components of RTT dynamics. In this paper, we introduce a novel parameter-varying RTT model for Internet roundtrip time prediction based on the information theory and the maximum entropy principle (MEP). Since the coefficients of the proposed RTT model are updated dynamically, the model is adaptive and it tracks RTT dynamics rapidly. The results of our experiments show that the MEP algorithm works better than the ARMA method in both RTT prediction and RTO estimation.

Performance Analysis for Weaker Channel User in Non-Uniform Source SSC NOMA with Novel BTS

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.36-41
    • /
    • 2022
  • Recently, to improve the performance of the strongest channel gain user in non-orthogonal multiple access (NOMA) with a non-uniform source and symmetric superposition coding (SSC), a novel bit-to-symbol (BTS) mapping have been proposed. However, only the performance of the user with the stronger channel gain was analyzed. Thus, we compare the bit-error rate (BER) of the new BTS scheme with that of uniform sources, especially for the user with weakest channel gain. First, we show that the performance of the novel BTS scheme for the user with weakest channel gain also improves, compared to that of the uniform sources. Furthermore, the signal-to-noise (SNR) gain of the new BTS scheme over the uniform sourcesis calculated. As a consequence, the novel BTS scheme would improve the performance of the user with weakest channel gain as well as that with the stronger channel gain for SSC NOMA with a non-uniform source.

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

Topology-Hiding Broadcast Based on NTRUEncrypt

  • Mi, Bo;Liu, Dongyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권1호
    • /
    • pp.431-443
    • /
    • 2016
  • Secure multi-party computation (MPC) has been a research focus of cryptography in resent studies. However, hiding the topology of the network in secure computation is a rather novel goal. Inspired by a seminal paper [1], we proposed a topology-hiding broadcast protocol based on NTRUEncrypt and secret sharing. The topology is concealed as long as any part of the network is corrupted. And we also illustrated the merits of our protocol by performance and security analysis.

HMAT을 사용한 Mobile IPv6의 QoS 보장 구조 (A QoS Support Architecture in Mobile IPv6 using HMAT)

  • 곡소위;홍충선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (3)
    • /
    • pp.358-360
    • /
    • 2001
  • In Integrated Services Internet the Resource Reservation Protocol (RSVP) provides a signaling mechanism for end to end QoS. In this paper, we propose a novel scheme using a Hierarchical Mobile Agents Tree (HMAT) based on the definition of new option called QoS Object Option (QOO) in order to improve the efficiency during handoff in Integrated Services Internet. Mobile agents are required to manage QOO, resource reservation and other mobility related basks un behalf of mobile hosts. This scheme is based on Mobile IPv6.

  • PDF

Scalable Hierarchical Identity-based Signature Scheme from Lattices

  • Noh, Geontae;Jeong, Ik Rae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3261-3273
    • /
    • 2013
  • In the paper, we propose a novel adaptively secure hierarchical identity-based signature scheme from lattices. The size of signatures in our scheme is shortest among the existing hierarchical identity-based signature schemes from lattices. Our scheme is motivated by Gentry et al.'s signature scheme and Agrawal et al.'s hierarchical identity-based encryption scheme.

Survivability in the Optical Internet Using the Optical Burst Switch

  • Oh, Seung-Hun;Kim, Young-Han;Yoo, Myung-Sik;Hong, Hyun-Ha
    • ETRI Journal
    • /
    • 제24권2호
    • /
    • pp.117-130
    • /
    • 2002
  • Due to its salient features, the optical burst switch is becoming a key technology for the optical Internet. Within this technology, the survivability issue in the optical Internet has to be addressed because a simple failure causes severe damage to the huge amount of data carried in optical fiber. In this paper, we introduce a restoration procedure that can provide good survivability in the optical burst switch (OBS)-based optical Internet. OBS restoration can survive various types of network failure while maintaining good network performance. We propose novel restoration mechanisms, namely, "temporary Label Switched Path (LSP)" and "bossy LSP," to enhance restoration time and network utilization. The simulation results verify that the proposed OBS restoration achieves good network performance and provides good network connectivity as well.

  • PDF

An Image Encryption Scheme Based on Concatenated Torus Automorphisms

  • Mao, Qian;Chang, Chin-Chen;Wu, Hsiao-Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권6호
    • /
    • pp.1492-1511
    • /
    • 2013
  • A novel, chaotic map that is based on concatenated torus automorphisms is proposed in this paper. As we know, cat map, which is based on torus automorphism, is highly chaotic and is often used to encrypt information. But cat map is periodic, which decreases the security of the cryptosystem. In this paper, we propose a novel chaotic map that concatenates several torus automorphisms. The concatenated mechanism provides stronger chaos and larger key space for the cryptosystem. It is proven that the period of the concatenated torus automorphisms is the total sum of each one's period. By this means, the period of the novel automorphism is increased extremely. Based on the novel, concatenated torus automorphisms, two application schemes in image encryption are proposed, i.e., 2D and 3D concatenated chaotic maps. In these schemes, both the scrambling matrices and the iteration numbers act as secret keys. Security analysis shows that the proposed, concatenated, chaotic maps have strong chaos and they are very sensitive to the secret keys. By means of concatenating several torus automorphisms, the key space of the proposed cryptosystem can be expanded to $2^{135}$. The diffusion function in the proposed scheme changes the gray values of the transferred pixels, which makes the periodicity of the concatenated torus automorphisms disappeared. Therefore, the proposed cryptosystem has high security and they can resist the brute-force attacks and the differential attacks efficiently. The diffusing speed of the proposed scheme is higher, and the computational complexity is lower, compared with the existing methods.

Higher-Order Masking Scheme against DPA Attack in Practice: McEliece Cryptosystem Based on QD-MDPC Code

  • Han, Mu;Wang, Yunwen;Ma, Shidian;Wan, Ailan;Liu, Shuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.1100-1123
    • /
    • 2019
  • A code-based cryptosystem can resist quantum-computing attacks. However, an original system based on the Goppa code has a large key size, which makes it unpractical in embedded devices with limited sources. Many special error-correcting codes have recently been developed to reduce the key size, and yet these systems are easily broken through side channel attacks, particularly differential power analysis (DPA) attacks, when they are applied to hardware devices. To address this problem, a higher-order masking scheme for a McEliece cryptosystem based on the quasi-dyadic moderate density parity check (QD-MDPC) code has been proposed. The proposed scheme has a small key size and is able to resist DPA attacks. In this paper, a novel McEliece cryptosystem based on the QD-MDPC code is demonstrated. The key size of this novel cryptosystem is reduced by 78 times, which meets the requirements of embedded devices. Further, based on the novel cryptosystem, a higher-order masking scheme was developed by constructing an extension Ishai-Sahai-Wagne (ISW) masking scheme. The authenticity and integrity analysis verify that the proposed scheme has higher security than conventional approaches. Finally, a side channel attack experiment was also conducted to verify that the novel masking system is able to defend against high-order DPA attacks on hardware devices. Based on the experimental validation, it can be concluded that the proposed higher-order masking scheme can be applied as an advanced protection solution for devices with limited resources.