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Abstract 

 
This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive 
radio networks. A fuzzy logic rule - based inference system is proposed to estimate the 
presence possibility of the licensed user's signal based on the observed energy at each 
cognitive radio terminal. The estimated results are aggregated to make the final sensing 
decision at the fusion center. Simulation results show that significant improvement of the 
spectrum sensing accuracy is achieved by our schemes. 
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1. Introduction 

Recently, cognitive radio (CR) has been proposed as a promising technology to improve 
spectrum utilization. In CR systems, CR users (CUs) are allowed to use the licensed bands 
opportunistically when such bands are not occupied, and must abandon its contemporary band 
to seek a new idle spectrum again when the frequency band is suddenly accessed by the 
licensed user (LU). Therefore spectrum sensing plays a key role in CR.  

In general, spectrum sensing can be achieved by a single CU. Among various spectrum 
sensing techniques, energy detection is an engaging method due to its easy implementation 
and admirable performance. In [1], it is shown that the received signal strength could be 
seriously weakened at a particular geographical location due to multi-path fading and 
shadowing effect. In these circumstances, single sensing node is difficult to distinguish 
between an idle band and an occupied band that is deeply faded or shadowed. In order to 
overcome this problem, cooperative spectrum sensing has been considered [2][3][4][8]. A 
half-voting rule has been investigated in [2]. However, this rule only works well when the 
threshold of CUs is identical, which is an impractical condition. In [5], Z. Chair and P. K. 
Varshney proposed a optimal data fusion rule for the distributed sensing model. This rule 
gives a good performance but it needs local probabilities of detection and false alarm of 
sensing nodes and prior probabilities to determine weights of local decisions and the decision 
threshold. In [3], an adaptive cooperative spectrum sensing scheme has been proposed to 
implement the optimal data fusion rule by using a counting rule. Although it provides a good 
performance, it needs time to converge when the channel environment is changed. Reference 
[4] proposed a collaborative spectrum sensing scheme in which fuzzy theory is applied to 
evaluate the credibility of each CU based on its sensing performance matrix. This approach is 
reasonable since fuzzy theory can provide a framework for dealing with vagueness and 
ambiguity [7], and can be a powerful tool to model the system under uncertain conditions as 
the case of fast changing RF environment [8]. Nevertheless, this scheme based on the 
assumption that the sensing performance matrix of each CU is invariant and is determined in 
the training stage where the status of the LU is exactly known in advance, which is not 
regularly proper in practice. Additionally, this scheme only guarantees that it can outperform 
“OR” and “AND” combination rules. In [8], a new combining scheme for cognitive spectrum 
sensing based on fuzzy logic has been proposed. A simple fuzzy decision making algorithm 
for decision fusion has been constructed for the simple case of three cooperative CR nodes. 
This approach provides good sensing performance and high flexibility for the decision fusion 
process in comparison with “OR”, “AND” and “Half-voting” combination rules. Nonetheless, 
when the number of cooperative CR nodes becomes larger, the number of inputs of this fuzzy 
decision making system increases. Subsequently, the number of inference rules increases 
exponentially, and the input of each rule must be adjusted. As a result, the decision fusion 
procedure at the fusion center must be upgraded. 

In this paper, a fuzzy rule-based inference system is proposed to make a soft decision on 
the status of the LU's signal at each CU. Based on the observed energy the presence possibility 
of the LU's signal is estimated and transmitted to the fusion center. Furthermore, an 
appropriate data fusion rule is also proposed to make the final sensing decision from estimated 
results of CUs. By this approach, the sensing performance can be maximized. 

The remainder of this paper is organized as follows: The problem of spectrum sensing and 
energy detection are briefly described in section 2. An overview of fuzzy logic and fuzzy logic 
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inference is shown in section 3. Our proposed cooperative spectrum sensing scheme is 
explicitly described in section 4. The simulation results are shown and analyzed in section 5. 
Finally, we draw the conclusion in section 6. 

2. Spectrum sensing and energy detection 

2.1 Spectrum sensing 
In a distributed scenario, each CU implements a local spectrum sensing to detect the LU's 
signal. Local spectrum sensing is essentially a binary hypotheses testing problem: 
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where H0 and H1 are respectively correspondent to hypotheses of absence and presence of the 
LU's signal, x(t) represents the received signal at the CU, h(t) denotes the amplitude gain of the 
channel, s(t) represents the signal transmitted by the LU and n(t) is the additive noise. 
Additionally, channels corresponding to different CUs are assumed be independent, and 
further, all CUs and LUs share common spectrum allocation. 

2.2. Energy detection 
To measure the energy of the received signal in a particular frequency region, a band-pass 
filter is applied to the received signal. The test static is equivalent to an estimation of the 
received signal energy which is given at each CU by: 
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where xj is the j-th sample of received signal and N is the number of samples, N = 2TW where 
T and W are correspondent to detection time and signal bandwidth, respectively. 
Without loss of generality, we assume that the noise at each sample is a Gaussian random 
variable with zero mean and unit power. If LU's signal is absent, xE follows a central 
chi-square distribution with N degree of freedom; otherwise, xE follows a non-central 
chi-square distribution with N degree of freedom and a non-centrality parameter Nγ [6]: 
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where γ is the signal to noise ratio (SNR) of the LU's signal at the CU. When N is relatively 
large (e.g. N > 200), xE can be well approximated as a Gaussian random variable under both 
hypotheses H0 and H1 with mean µ0, µ1 and variance σ0

2, σ1
2 respectively [6] 
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A local hard decision of the CU can be made as follows: 

{ 1

0

λEH : xu H : otherwise
≥=                                                   (5) 

where λ is the decision threshold of the CU. 
The false alarm probability and detection probability of the CU are calculated as follows: 

1 0 0λf Ep P[u H | H ] P[ x | H ]= = = ≥                                   (6) 
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1 1 1λd Ep P[ u H | H ] P[ x | H ]= = = ≥                                    (7) 
where P[.] stands for the probability. 
From equation (4), pf and pd can be given as 
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where Q(.) is the complementary cumulative Gaussian distribution function, 
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3. Brief overview of fuzzy logic 

3.1 Fuzzy set 
Traditional set theory has a crisp concept of membership: an element either belongs to a set or 
it does not. Fuzzy set theory differs from traditional set theory in that partial membership is 
allowed. This degree of membership is commonly referred to as the membership value and is 
represented using a real value in [0, 1], where 0 and 1 correspond to full non-membership and 
membership, respectively. Formally, a fuzzy set A in a universe U is defined by the 
membership function 

[ ]0 1μA :U ,→                                                    (11) 
so that for each u in U, its grade of membership to A is given by µA(u) .  

3.2 Fuzzy logic 
Fuzzy logic was proposed as a method to extend binary logic to cover the problem of 
reasoning under uncertainty. Fuzzy logic can be used to make decisions by using incomplete, 
approximate, and vague information. In short, instead of using complicated mathematical 
formulations, fuzzy logic uses human-understandable fuzzy sets and inference rules (e.g. IF, 
THEN, ELSE, AND, OR, NOT) to obtain the solution that satisfies the desired system 
objectives.  

Predicates in fuzzy logic can have partial degrees of truth, in the same way as elements can 
have partial membership in fuzzy set theory. The grade of truth of a predicate is represented 
using a real number in [0, 1]. The grade of truth of a generic predicate P in the form “x is A'' is 
given by µP = µA(x). The traditional logic operators ¬ (NOT), v (OR), and ^ (AND) are 
redefined in terms of how they modify the truth value of the predicate(s) to which they are 
applied in order to produce the truth value of the final statement: 

1μ μP P¬ = −                                                              (12) 
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These operators provide basic support for qualitative reasoning in decision making systems. 

3.3 Fuzzy logic inference system 
The architecture of a fuzzy logic inference system is depicted in Fig. 1. The modules 
composing a fuzzy logic inference system are described in the rest of this subsection. 

 

 
 

Fig. 1. The basic architecture of a fuzzy logic inference system. 
 
3.3.1 Knowledge base 
The knowledge base characterizes the relationship between crisp input/output parameters and 
their fuzzy representation understood by the fuzzy logic inference system. Each input/output 
variable is characterized by the following items in the knowledge base: 
• Its universe 
• The set of linguistic attributes (“labels”) that compose its qualitative representation 
• For each label, the membership function defining it 
Furthermore, the knowledge base provides a set of inference rules for the inference engine. 

These rules is constructed in form of “IF – THEN” statement based on the experience of 
experts. 
 
3.3.2 Fuzzifier 
Fuzzification is the process of translating crisp input measurements into their fuzzy 
representation. This process is carried out for each input variable at every inference cycle, by 
evaluating the membership value of each attribute characterizing it.  
 
3.3.3 Rule-based inference engine 
The heart of a fuzzy logic inference system is composed of a set of IF-THEN rules used to 
determine the value of the output variables. IF conditions are composed using the predicates 
and logic operators, while THEN statements are commonly predicates indicating the fuzzy 
attribute that is more appropriate for the output variables involved. 
The process of rule evaluation is easier to explain by an example. Let A, B be input variables, 
and C be an output variable. Let A, B and C be represented by the linguistic attributes A1 and A2, 
B1 and B2, and C1 and C2, respectively. Suppose we have the following rule set: 
• Rule 1: IF (A is A1) and (B is B1) THEN (C is C1). 
• Rule 2: IF (A is A2) or (B is B2) THEN (C is C2). 
Finally, let a and b be the current crisp values for A and B. First of all, the truth value for 

each rule is calculated as follows: 
( ) ( )

1 11α μ μA Ba b= ∧                                                (15) 
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( ) ( )
22 2α μ μA Ba b= ∨                                               (16) 

Then a modified membership function is calculated for the inference output recommended 
by each rule by taking the minimum (fuzzy ^ operator) of its membership function and the 
truth value of the IF clause: 

1 11μ α μ,
C C= ∧                                                         (17) 

2 22μ α μ,
C C= ∧                                                        (18) 

Finally, the membership function for the decision output of variable C is calculated by 
taking the maximum (fuzzy v operator) of the modified membership of all decision actions 
referring to C: 

1 2
μ μ μ, ,

C C C= ∨                                                         (19) 
The above inference method is called max-min inference method [7]. 
 
3.3.4 Defuzzifier 
The rule evaluation and decision making process has produced, for each output variable, a 
membership function µC(c) representing the appropriateness of each output value c. 
Defuzzification is the process of determining an appropriate crisp value to be used as the 
actual output. One of the most commonly used techniques for this purpose is the center of area 
method, in which the output is determined from the center of gravity of the membership 
function from the outcome of the set of rules. Let Θ = {c | µC(c) > 0} denote a set of outputs c 
with membership value larger than zero, the appropriate crisp value at the output of the fuzzy 
logic inference system is derived as follows: 
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4. Proposed cooperative spectrum sensing scheme 
For LU's signal detection, we consider a cooperative spectrum sensing scheme like Fig. 2. 
Each CU conducts its local estimation of LU signal presence possibility based on its observed 
energy, and then transmits its estimation result to the fusion center (FC) where the final 
decision is made. 

4.1 Local estimation of the LU’s signal presence possibility 
To make the soft decision about the presence of the LU’s signal, each CU measures the 
received signal energy following equation (2) and estimates the SNR of the LU’s signal 
[10][11][12]. From equation (4), we have the estimated means and variances corresponding to 
hypotheses H0 and H1 as follows: 
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where γ iˆ is the estimated SNR of the LU's signal at the i-th CU. 
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Fig. 2. The fuzzy logic-based cooperative spectrum sensing scheme. 

 
In order to apply fuzzy logic to estimate the presence possibility of the LU's signal at each 

CU, we propose a simple fuzzification strategy as follows: 
• The observed energy, denoted by xEi, is represented by the two linguistic attributes, 

Weak and Strong, with their membership functions respectively given as follows: 
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These membership functions are illustrated in Fig. 3. 

• The presence possibility of the LU's signal, denoted by PP, is represented by the two 
linguistic attributes, Low and High, with their membership functions illustrated in Fig. 
4. 
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Fig. 3. The membership functions of the input parameter. 

 

 
Fig. 4. The membership functions of the output parameter. 

 
The fuzzy inference rule set is proposed as follows: 

• Rule 1: IF (xEi is Weak) THEN (PP is Low), 
• Rule 2: IF (xEi is Strong) THEN (PP is High). 

To obtain a low computation cost, the max-min inference method [7] was used. If we denote 
ei be the value of the observed energy measured by the i-th CU, then the truth value for each 
rule is calculated as below: 

( )1α μ
i Weak ie=                                                      (24) 

( )2α μ
i Strong ie=                                                     (25) 

The modified membership function of each rule is derived by taking the minimum of its 
membership function and the corresponding truth value of the IF clause: 

( )1 1μ α μ
i iR Low' ( PP ) min , ( PP ) ,=                                  (26) 

( )2 2μ α μ
i iR High' ( PP ) min , ( PP ) .=                                  (27) 

The final output membership function of the estimation process at the i-th CU is 

( )1 2
μ μ μ

i iRi R R( PP ) max ( PP ), ( PP ) .=                             (28) 

By using the center of area defuzzification method, the crisp value of the LU's signal 
presence possibility evaluated by the i-th CU, denoted by Poi(H1), is obtained as follows: 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 3, June 2010                                              297 

1

0
1 1

0

μ

μ

Ri

i

R

PP ( PP )dPP
Po ( H ) .

( PP )dPP
=
∫

∫
                                       (29) 

4.2 Data fusion at the FC 
Let PS(H1) and PS(H0) be respectively the summation of the local LU's signal presence 
possibility values and the summation of the local LU's signal absence possibility values. Then 
we have 
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where M is the number of CUs in the CR network. 
The FC makes the final decision upon the following strategy: 

{ 1 1 0
0

0

H : if PS( H ) PS( H )u H : otherwise.
≥=                                  (32) 

It means that the final decision is made based on the sum of local soft decisions. Intuitively, 
the proposed fusion rule is more simple than the combining rule proposed in [8]. In [8], local 
decisions are firstly fuzzified into three linguitic attributes. For the case of M CUs, there are 3M 
inference rules must be evaluated, and each rule contains M predicates. After aggregating 
modified membership functions of 3M inference rules, the final decision is made by comparing 
the output of defuzzification procedure with a certain threshold. Therefore, when M increases, 
the number of rules as well as predicates of each rule must be changed correspondingly. On the 
other hand, in the proposed rule, the FC can make the final decision after summing received 
local soft decisions. 

 

5. Simulation Results and Analysis 
To evaluate the performance of the proposed spectrum sensing scheme, Monte-Carlo 
simulations are carried out with 20,000 samples under following conditions: 

• The number of CUs is 5. 
• The LU signal is DTV signal as in [9].  
• The bandwidth of LU signal is 6 MHz, and both the non-fading and fading additive 

white Gaussian noise (AWGN) channel are considered. 
• The identical number of samples N is 300. 

For sensing performance comparison, we consider “AND”, “OR”, “Half-voting” and 
“Chair-Varshney” hard decision fusion rules, and equal gain combination (EGC) based and 
maximal-ratio combination (MRC) based soft decision rules.  

In Table 1, some differences between the proposed scheme and other comparison schemes 
are briefly analyzed. 
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Table 1. The comparison of proposed scheme and other comparison schemes 

Scheme Local decision making procedure  

at CUs 
Final decision making procedure 

 at the FC 

AND/OR based 
scheme 

Binary decision is made using (5) with 
optimal decision threshold. 

The final decision is made upon 
AND/OR rule. 

Half-voting rule 
based scheme 

Binary decision is made using (5) with 
optimal decision threshold. 

The final decision is made upon 
majority rule. 

Chair-Varshney 
(Optimal data 
fusion) rule 
based scheme 

Binary decision is made using (5) with 
optimal decision threshold. 

- The final decision is made based on 
the assumption that the FC has fully 
knowledge about local sensing 
performance and prior probabilities 
of LU’s signal. 

- The final decision is made by 
comparing the weighted summation 
of local decisions with a decision 
threshold. 

- The decision threshold is a function 
of prior probabilities, namely P[H0] 
and P[H1]. 

- The weight of each local decision is a 
function of local sensing 
performance, namely local miss 
detection probability and local false 
alarm probability. 

Equal gain 
combination 
(EGC) based 
scheme 

Local observed energy xEi is 
transmitted directly to the FC. 

- Local observed energies are 
combined equally to make a 
summation. 

- The final decision is made by 
comparing the summation with a 
decision threshold. 

- The decision threshold is determined 
based on the desired global false 
alarm probability [13]. 

Maximal-ratio 
combination 
(MRC) based 
scheme 

Local observed energy xEi and SNR of 
LU’signal γi are transmitted directly to 
the FC. 
 

- Local observed energies are 
combined to make a weighted 
summation. 

- The weight of each local observation 
is determined by normalizing the 
SNR of LU’s signal at the 
corresponding CU. 

- The final decision is made by 
comparing the weighted summation 
with a decision threshold. 

- The decision threshold is determined 
based on the desired global false 
alarm probability [13]. 
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Proposed scheme Soft decision is made by exploiting an 
identical fuzzy inference system as 
follows: 

- Measured energy is fuzzified into 2 
linguistic attributes. 

- The modified membership function of 
each rule is calculated (there are 2 
rules and each rule has 1 predicate).

- The membership function of the output 
decision is calculated by taking 
maximum of the modified 
membership function of 2 rules. 

- The output decision is obtained by 
defuzification procedure. 

The final decision is simply made by 
comparing summation of presence 
possibilities with summation of absence 
possibilities: 

{ 1 1 0
0

0

H : if PS( H ) PS( H )u H : otherwise.
≥=

 

 
Firstly, the sensing performance of the proposed scheme is compared with the sensing 

performance of hard decision based schemes like “AND”, “OR”, “Half-voting” [2] and 
“Chair-Varshney” [5] decision fusion rules in AWGN and Rayleigh fading channels. In these 
comparision schemes, CUs make local hard decision based on the equation (5) with optimal 
local decision thresholds. The local decision threshold is chosen to balance the tradeoff 
between minimizing local false alarm probability and maximizing local detection probability. 
With the full knowledge of LU’s signal at each CU, its optimal local decision threshold is 
selected at the intersection between p.d.f curves of the measured energy under H0 hypothesis 
and H1 hypothesis. 

In the first simulation, our proposed algorithm have been experienced under condition that 
the CU1, CU2, CU3 and CU4 have same AWGN channel with SNR = -12dB, and the SNR at the 
fifth CU is changed from -24 to -6 dB, which is reasonable for the spectrum sensing problem 
in CR context. Under such condition, the global detection probability pD and the global false 
alarm probability pF of our proposed scheme and reference schemes are shown on Fig. 5. The 
detection probability of “OR” rule is always largest but its probability of false alarm also is 
always largest. The false alarm probability of “AND” rule is always smallest but its 
probability of detection is similar too. It can be said that both “AND” rule and “OR” rule have 
bad performance. For our proposed scheme, both detection probability and false alarm 
probability always give a remarkable improvement, compared to “AND” rule, “OR” rule, 
“Half-voting” rule and even to “Chair – Varshney” rule, which is mainly due to the selection 
of effective membership functions and reasonable inference rules. In the comparison schemes, 
each CU makes a local hard decision by using equation (5) as mentioned above. However, this 
hard decision can not convey complete information to the FC. The “Chair – Varshney” scheme, 
which has been known as an optimal fusion rule [5] in the case of hard decision, compensates 
for this information loss by weighting local hard decisions according to their reliability, that is, 
the weights are functions of local probability of false alarm and local probability of miss 
detection. These local probabilities are transmitted from CUs to the FC to calculate weights. 
As a result, “Chair – Varshney” scheme outperforms “AND”, “OR”, and “Half-voting” 
scheme. On the other hand, in our proposed scheme, each CU makes a soft decision on the 
status of the LU's signal by utilizing a fuzzy logic inference system. Each soft decision 
contains complete information about the status of LU's signal as well as the realibility of the 
decision since the proposed membership functions fully reflect characteristics of the 
probability distributions under both hypotheses H0 and H1 as well as the relationship between 
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observed energy and its statistic parameters. Consequently, the proposed scheme is superior to 
comparison schemes.  

The second simulation was conducted under condition that all the CUs in the CR network 
are affected by Rayleigh fading. When a signal experiences a Non-Line-of-Sight multipath, 
the signal amplitude follows a Rayleigh ditribution, and the SNR of the LU’s signal at the CU 
follows an exponential distribution  whose p.d.f is given by 

( ) 1 0
γ
γ

γ γ γ
γ

f e ,
−

= >                                                     (33) 

where γ  is the mean SNR value. 
We assume that all CUs suffer independent and identically distribution fading channel with 

γ = -12 dB. The fading is assumed to be slow compared to the observed interval of the sensing 
method. Thus, the channel is assumed to remain constant during data block but it varies 
randomly between consecutive blocks. The sensing performance is assessed based on the 
receiver operating characteristics (ROC) curves of the proposed scheme and comparison 
schemes. As shown in Fig. 6, the fading degrades the sensing performance of “Chair – 
Varshney” rule and our proposed rule. Although the “Half-voting” rule is not degraded by 
fading, but its performance is quite low. Intuitively, it can be seen that our proposed scheme 
has the outstanding sensing performance compared with comparison schemes under both 
non-fading and fading condition. 

 

 
Fig. 5. The comparison of global detection and global false alarm probability between proposed scheme 
and other combination rules under the condition that all channels are AWGN and SNR of CU1 - CU4 are 

-12dB and SNR of CU5 changes from -24dB to -6dB. 
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Fig. 6. ROC curves of our proposed scheme vs. other combination schemes under the condition that all 

channels are AWGN and mean SNR of five CUs is -12dB. 
 

 
Fig. 7. ROC curves of our proposed scheme vs. other combination schemes when non-fading and fading 
AWGN channels are considered with mean SNR of five CUs' SNR are -22, -19, -16, -13, and -10dB, 

respectively. 
 

In order to evaluate our proposed scheme with the fading channel corresponding to more 
realistic operational environments where distributed CUs suffer difference channel condition, 
we consider the situation that the mean SNR value at five CUs are respectively -22dB, -19dB, 
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-16dB, -13dB, -10 dB. Under such condition, the ROC curves, illustrated on Fig. 7, shows that 
among five combination rules “Half-voting” combination rule has lowest sensing performance 
whereas our proposed rules has highest sensing performance under both non-fading and fading 
AWGN channel.  

Secondly, the sensing accuracy of the proposed scheme is compared with that of two soft 
decision based schemes including equal gain combination (EGC) based scheme and 
maximal-ratio combination (MRC) based scheme. In the EGC based scheme, each CU sends 
its observed energy to the FC, and then the final decision is made by comparing the summation 
of local observed energies with a decision threshold that is determined based on the desired 
global false alarm probability. In the other hand, in the MRC based scheme, each CU sends its 
observed energy and SNR of LU’s signal to the FC. At the FC, the final decision is made by 
comparing the weighted summation of local observed energies with a decision threshold, in 
which the weight of a local observed energy is determined by normalizing the corresponding 
SNR. As a result, the MRC based scheme has a good sensing accuracy. In low SNR regime, i.e. 
γ < 1, the MRC is identical to the optimal soft combination as proved in [13]. 

 

 
Fig. 8. ROC curves of our proposed scheme vs. other soft decision based schemes when non-fading and 
fading AWGN channels are considered with mean SNR of five CUs' SNR are -18, -16, -14, -12, and 

-10dB, respectively. 
 

Fig. 8 shows the simulation results under the condition that the mean SNR values for five 
CUs are respectively -18dB, -16dB, -14dB, -12dB, -10 dB. It can be observed that under both 
non-fading and fading conditions, our proposed scheme outperforms the EGC based scheme, 
and has as a good sensing performance as the MRC based scheme does. However, it is 
noteworthy that the MRC based scheme requires more control channel bandwidth than the 
proposed scheme since all CUs have to send their local observed energy as well as SNR of 
LU’s signal to the FC in the case of MRC based scheme. 

Admittedly, the simulation results in this section prove that the proposed scheme has the 
ability to significantly improve the sensing performance in CR networks. 
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6. Conclusions 
Spectrum sensing is a fundamental problem in CR networks. In this paper, we have proposed a 
cooperative spectrum sensing scheme using fuzzy logic to estimate the presence possibility of 
the LU's signal at CUs. At the fusion center, the final sensing decision is made based on local 
estimated results of the CUs. Simulation results have shown that the proposed scheme 
achieves a good sensing performance in comparison with other cooperative spectrum sensing 
schemes.  
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