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Internet Roundtrip Delay Prediction Using the Maximum
Entropy Principle

Peter Xiaoping Liu, Max Q-H Meng, and Jason Gu

Abstract: Internet roundtrip delay/time (RTT) prediction plays
an important role in detecting packet losses in reliable trans-
port protocols for traditional web applications and determining
proper transmission rates in many rate-based TCP-friendly proto-
cols for Internet-based real-time applications. The widely adopted
autoregressive and moving average (ARMA) model with fixed-
parameters is shown to be insufficient for all scenarios due to its
intrinsic limitation that it filters out all high-frequency components
of RTT dynamics. In this paper, we introduce a novel parameter-
varying RTT model for Internet roundtrip time prediction based
on the information theory and the maximum entrepy principle
(MEP). Since the coefficients of the proposed RTT model are up-
dated dynamically, the model is adaptive and it tracks RTT dy-
namics rapidly. The results of our experiments show that the MEP
algorithm works better than the ARMA method in both RTT pre-
diction and RTO estimation.

Index Terms: Internet, delay, prediction, maximum entropy prin-
ciple.

I. INTRODUCTION

For today’s Internet, a best-effort packet-switching network,
data packets may get lost or corrupted somewhere on the route
from the source to the destination due to innumerous reasons,
such as network congestion and component failure. Dynam-
ically estimating the timer, i.e., the roundtrip timeout (RTO),
is a key function in many reliable transport protocols to detect
packet loss and determine whether the network is congested. For
example, the TCP protocol guarantees reliable delivery by em-
ploying a retransmission mechanism: When a packet is unac-
knowledged within the RTO, it is assumed that the packet is lost
and a retransmission is triggered (1], [2]. Thus, proper RTO is
important to achieve high network throughput: If RTO is too
large, network clients suffer from needless long waits before re-
transmitting lost packets; on the other hand, if the RTO is too
small, it will reduce the effective network throughput due to
unnecessary retransmission [3] Since the RTO (timer) for the
next packet is computed from the estimate of the RTT, inaccu-
rate RTT prediction probably leads to incorrect timers. Conse-
quently, to attain a proper timer, it is crucial that we shouldto
first have an accurate predictor for RTT.
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As underlying Internet technologies continue to advance
rapidly, more and more realtime applications, such as network
conferencing, multimedia and teleoperation, are appearing on
the Internet. For these applications, timely delivery is critical
and the conventional TCP protocol is unsuitable. Currently,
significant efforts are being devoted to developing new TCP-
friendly transport protocols which are suitable for real-time
tasks, such as the TFRC (TCP-Friendly Rate Control) protocol
[4], the RAP (Rate Adaptation Protocol) [5] and the trinomial
protocol [6]. For these protocols that are usually rate-based by
nature, accurately estimating RTT is particularly important since
the values of RTT estimates determine the transmission rate of
the protocol directly. For the RAP protocol, for instance, the
sending rate is controlled by adjusting the value of the inter-
packet-gap (IPG) at the source, which relies on an accurate pre-
diction of RTT to determine the IPG value, the interval between
two succeeding packets. For example, if the RTT estimate is 1
second and the transmission rate is 5 packets per RTT, then the
value of IPG is 0.2 second. Consequently, smaller IPGs mean
higher transmission rate while larger IPGs indicate lower trans-
mission rate. In other words, too large RTT estimates lead to a
conservative protocol for which network bandwidth is used in-
effectively. On the contrary, too small RTT estimates give rise
to an aggressive protocol, which introduces unfairness among
competing flows and is harmful to network stability [7]. Of
course, for these real-time protocols, RTT prediction is also nec-
essary to estimate the timer in determining whether the network
is congested just like in TCP.

In addition, for applications such as Internet-based teleoper-
ation [8], various sensory sources (visual, range and haptic, for
instance) about the remote scene may not arrive at the human op-
erator’s end simultaneously. A proper estimate of RTT is desir-
able for the synchronization and fusion of different data sources
when the information is presented to the human operator. It is
also quite helpful for designing teleoperation compensation con-
trol algorithms and analyzing system stability if RTT is known
in advance.

Due to its key importance as discussed above, RTT prediction
has been studied for quite a long time {2], [3], [9]-[16]. Be-
fore we proceed further, let us first review the widely adopted
RTT estimation algorithm — an autoregressive and moving aver-
age (ARMA) model with fixed parameters. The parameter-fixed
ARMA model has been well acknowledged because of its low
computing cost and more of Jacob’s implementation of TCP:
Jacob successfully solved the problem of frequent network con-
gestion and collapse owing to unnecessary retransmission by
employing the ARMA model for RTT estimation in 1980s [2].
For convenience, throughout the rest of the paper, we refer to R,,
as the RTT measurement of the nt" data packet, fln as the RTT
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prediction of the n'"* data packet, and &, as the prediction of

the RTT variation of the n*" data packet. In Jacob’s TCP imple-
mentation, the estimate of RTO for the next packet, RTO, 1,
is given by

RTOn41 = Rpv1 + B8 X Gnqa, (N
where 3 is a constant variance factor that is 4, and Rn+1is com-
puted from

R,i1=(Q—-a)R,+axR,, 2)
which is a least mean-square error predictor based on an ARMA
process where « is a constant smoothing factor that is between
0.1 and 0.2 {1]. Jacob calis R, the smoothed RTT (SRTT) in
[2].

We visit the topic of RTT estimation mainly for three reasons.
First, we have developed a new TCP-friendly transport protocol
called the trinomial protocol for Internet-based teleoperation in
which the transmission rate is a function of RTT estimation [6].
Though the protocol is theoretically TCP compatible, we found
from the simulation that it was hard for the protocol to be TCP
compatible by employing the ARMA model with fixed param-
eters. This is the primary motivation of our efforts to look for
new algorithms for RTT estimation. Secondly, since there has
been an explosive growth in the size, types and complexity of
the Internet since 1990s, the models of RTT dynamics and the
network in the literature may not be applicable to today’s Inter-
net. Thirdly, the ARMA model with fixed parameters has in-
herent limitations and is not sufficient for all scenarios [3], [5],
[6], [9], and (10]. In Jacob’s TCP implementation, for exam-
ple, to avoid unnecessary retransmission, the inaccuracy of the
RTT estimate from the ARMA model is absorbed by choosing
a quite large variance factor (—/ = 4) in the process of estimat-
ing RTO. However, in many rate-based protocols for real-time
applications, the estimated RTT determines transmission rate di-
rectly as mentioned earlier. The weakness of the parameter-fixed
ARMA method is shown by the implementations of both the
RAP protocol [5] and the trinomial protocol [6].

The shortcomings of the conventional ARMA model lie in the
fact that it filters out all the high-frequency components of RTT
dynamics and thus is incapable of tracking rapid RTT variation.
By doing some mathematical manipulations, the ARMA model
shown by (2) can be converted into the following form [10]:

o
Royi =M+ eppi1a E €n—k+1,
k=1

3)

where M is a constant representing the mean of RTT; ¢;, i =
—og, -+ ,n,n + 1, is a sequence of independent, identically
distributed (iid) random variables with zero mean and a certain
variance. From (3), we see that: As o — 1, Rn+1 is mod-
eled by a Brownian motion, which is a nonstationary process;
as o — 0, Rn+1 is characterized by a base plus a white noise
process, which is a stationary process; as 0 < a < 1, Rn+1
is the sum of a white noise process and a weighted Brownian
motion process. First, with such a small and fixed value of
alar = 0.1 «~ 0.2), this model presumes implicitly that RTT
dynamics is dominated by a slow stationary noise process and
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independent of concurrent network states, such as load, conges-
tion, routing and path etc. However, we know that when the net-
work is heavily loaded or congested, RTT grows rapidly and sig-
nificantly [3], [12]. Accurate RTT prediction is particularly es-
sential for rate-based protocols to be TCP-friendly when the net-
work is congested. Secondly, RTT potentially varies largely and
quickly [3], [13], and [17]. For example, since 1P is a datagram
protocol with dynamic routing, packets may be routed through
different paths from source to sink dynamically with quite dif-
ferent delays. Thirdly, due to the rapid change of connection
types and significant increase in the number of users, the RTT
dynamics of today’s Internet is quite complicated {91, [10]: A
measured RTT sequence may be governed by a noise process in
some intervals, but may show strong structures in others. These
characteristics are not well fitted by models with fixed parame-
ters. In addition, the conventional ARMA method does not work
with short-lived connections, in which the senders and receivers
only exchange a small number of packets [3], [10].

In this paper, rather than sticking to parameter-fixed models
such as the conventional ARMA model, we introduce a model-
adaptive algorithm for RTT prediction based on the information
theory and the maximum entropy principle (MEP) inspired by
Klan and Darbellay’s work [18]. The rest of the paper is orga-
nized as follows. In Section II, we present a parameter-varying
autoregressive (AR) RTT model in which the estimated RTT is
regarded as a linear combination of past observations. The pre-
diction problem thus is figuring out a way to get the coefficients
of the AR model. Section III describes the key idea of the pro-
posed MEP algorithm and shows how to update the coefficients
of the RTT model adaptively and dynamically. In Section IV, the
performance of the MEP algorithm is examined and compared
with that of the traditional ARMA method. Section V summa-
rizes the paper with conclusions.

II. PROPOSED PARAMETER-VARYING RTT MODEL

The RTT prediction issue can be simply expressed as: Given
the knowledge of current RTT and £ — 1 past RTT observations,
{Rii=n,n—1,--- ,n—k+ 1}, what is the most likely value
of the next RTT, Rn+1 . This is a univariate short-term (one-
step ahead) forecasting problem for which the predicted RTT,
Rn+1, can be regarded as a function of k currently available
observations, i.e.,) Rn+1 = f(Rp,Rn-1,-"+ , Ru_k+1), where
f is unknown and £ is the order, or ‘memory,” of the model. The
forecasting problem is actually to choose an optimal f based on
some criteria so that Rn+1 is as close as possible to R, that
has not occurred.

First let us consider a tentative linear AR model for RTT dy-
namics, where Rn+l is a convex combination of &k observations
in the form:

Rn+1 = aann + anZRn-—l R o ankRn—lH—l s (4)

where a,1,an2, - - , ank are the coefficients of the model. The
lower index n expresses the time-dependence of the coefficients.
The coefficients satisfy the following condition:

k
> ani=1, an >0. )
i=1
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The constraint shown in (5) makes the RTT model shown
in (4) different from ordinary AR models. However, the
inappropriate of the RTT model is evident. From (5),
we know that R,.y can lie only in the interval |a,,b,],
where a, = min{R,,R,-1,- - ,Rp-k+1} and b, =
min{R,, R, 1, - ,Rn_xs+1} . Hence, the interval, |ay, by, |
, should be extended to be practicable. For this purpose, two
more terms, R and R | such that R < a,, and R > b, ,
are added into (4). The RTT model then becomes

Rn+1 = Ry +analo_ 1+

+ankRn—k1 + anes ) RE + angrin) Ry, (6)

and the constraint on the coefficients now becomes

k+2

Zam =1, ap; 20.
i=1

Now, we assume that the coefficients of the model shown in (6)
still possess validity when they are used to calculate R,, with
the real time series, {R;, 1 =n—1,n—2,--- ,n — k} The
following reflex condition is used for this purpose:

)

Rn = aann—l + a'n2Rn—2 + ankRn—k

+anr1) RE + anges) R ®)

This assumption is well justified in [18]-[20]. From (7), we
know that all the coefficients, a,,;, i = 1,2, -+ ,k + 2, are
positive numbers and the sum of them is equal to 1. Hence, the
coefficients can be regarded as a set of probability distributions
over R = {R,_1,Rn-2, -+, Rn_x, RE, RZ} and the reflex
condition, (8), can be understood as the constraint on the set of
probability distributions (This is the key idea of the proposed
method). If this is the case, we can use the maximum entropy
principle to update the coefficients at each step. Because the co-
efficients of the RTT model are updated dynamically, the model
is parameter-varying and adaptive. In the next section, we show
how to calculate the coefficients by using the maximum entropy
principle.

L. MAXIMUM ENTROPY PRINCIPLE (MEP)
ALGORITHM

The reflex condition specified by (8) is the only relevant infor-
mation available on R,, ;1 at the instant of packet n and there are
infinite distributions satisfying (8). According to the informa-
tion theory, the maximum entropy principle is the most unbiased

prescription to choose the coefficients, an;,¢ = 1,2,--- [k + 2
, for which the Shannon entropy, i.e., the expression:
k+2
an = Z anljnanl (9)

is maximal under the reflex condition, (8). This is a typical op-
timization problem. Using the Lagrange multipliers, we get the
solution as

e*Ban‘]

Opi = 1=1,2,--- k42,

. 10
Zfﬁ e—Bn R (10)
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where 3, is the solution of the following equation,

k42
> (Raj = Ra)e P17 — g, (an
=1

In (10) and (11), R,y (1) = RE and R,,_(,,10) = RE .

The maximum entropy probability distribution represents the
least biased judgment possible for a,,;, ¢ = 1,2,--- kK + 2.
This claim is justified in [21], [22] and thereafter. For exam-
ple, the MEP contains the classic principle of insufficient reason
(PIR) as a special case. Indeed, in the absence of any reasons,
i.e. in the case there no or only trivial constraints are imposed on
the probability distribution, H (a,,) is maximal when all proba-
bilities are equal, which corresponds to a uniform distribution.

Since RTT is usually updated at every ACK received, the
computing overhead plays a crucial role in designing RTT pre-
diction algorithms. Because (11) is an exponential equation, the
computation would be too intensive to be practical for real-time
on-line implementation if it were solved numerically. To get
around this problem, we use an approximate analytical approach
to solving a,;, ¢ = 1,2,--- ,k+ 2. From (7), we can write

Qng = + Sni »

k+2

where i, i +1,2,--- ,k + 2, is a real number and 3 ¢,; =
0. The entropy of the associated distribution at instant n then
becomes:

k+2

H(an) = - Z(g + ni) In(g + Sni),

i=1
where g = 1/(k+2) . Below, to simplify the notations, we drop
the index n. The logarithm term in the above equation can be
written as

S <
(g +<) = W((g)(1+ ) =In(g) +In(l+ )
S1 <1
~ 1 A
n(g) + PRy
The entropy then becomes
k+2 g
H(a) ~ - g+¢) [ln ‘ ]
(a) Z iy
k+2 k+2 k42 2 k+2
~ —Zgln Z§1+Z——~Z§,ln
k+2 2

Xy

Since Zl 1 Si = 0 and g is a constant, we get

k42

Zgln

Substituting g in the above equation with 2/(1 + k) , the opti-
mization problem becomes:

k42 2

2129

k+2

1 1
_g(k+zln(1"+2))*

max{H(a)} = rnélx{
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Table 1. Data collection specifications.

Collection Date Sept. 24,2001 (Mon) | Sept. 25,2001 (Tue) | Sept. 26, 2001 (Wed)
Collection Time 10:00am 14:00pm 18:00pm
Pingee Host Location Northern America Asian Europe
Host Type Academy Business Government

Since the first sum at the right-hand side of the above equation
is a constant and ,,; = a; — 1/(k + 2), this is equivalent to

main{kzw(a~ ki2i)2}'

=1

Taking the constraints, (7) and (8), into account, using the La-
grange function and reintroducing the index n for an; , we get
the final solution as

ani = C = (Ru_1 + AC)(R, — AC)/(B -~ A°C),  (12)
where A=), R,_;, B=3,R2_jandC =1/(k+2).

Since (12) is only a simple polynomial equation and k is usu-
ally less then 5 as in our experiments, the computing cost of
updating the coefficients should not be a big burden on real-
time implementation especially for today’s computers which are
quite several orders faster than the ones 15 years ago when the
ARMA method was first adopted although the network is orders
faster than before as well. In fact, the proposed MEP algorithm
was successfully implemented on-line in the trinomial protocol
[6]. In addition, for real-time applications, the computing cost
devoted to RTT estimation using the MEP method is quite trivial
compared to the costs for other computations. In Internet con-
ferencing, for instance, one live image is usually transferred ev-
ery 30ms~50ms, during which the computing overhead of RTT
estimation is nearly nothing compared to image-related compu-
tation that usually includes image capturing, digitalization, com-
pression, encoding, and buffering.

IV. EXPERIMENTS

To verify the validity of the MEP algorithm, it is examined by
using the data collected from real-world Internet connections.
For numerical evaluation, the results are compared with those
of the current ARMA method in both RTT prediction and RTO
estimation.

A. Data Collection

The ICMP protocol based Pinger is chosen as the tool to col-
lect data for two reasons. First, the implementation mechanism
of the ICMP protocol is similar to rate-based realtime protocols.
Second, ICMP based Pinger tools are widely available. The
Pinger tool we used is T/PingPro(©1.2.1 , an RTT measure-
ment tool developed by Top Jimmy Software [23]. In the ex-
periments, nonfragmented ICMP packets are sent out at regular
intervals from the Pinger host, meng.ee.ualberta.ca, at the Uni-
versity of Alberta, Canada, to the selected Pingee hosts around
the world. Due to the huge diversity of the Internet, it is impos-
sible to examine the MEP algorithm under all conditions for all

Table 2. Performance comparison summary.

OH (%) ERR (%)
ARMA | MEP | ARMA | MEP
Monday 19.06 16.38 375 1.81
Tuesday 25.51 16.31 1.98 1.31
Wednesday 20.26 19.71 3.73 1.69

connections. For a fair representative, one Pingee host is cho-
sen randomly from each combination of locations and sectors in
Table 1. As a result, we have 9 links for the experiments.

The time scheduled for data collection in Table 1 is based on
Mountain Time (US & Canada). Data is collected for 3 succes-
sive working days and we have a total of 81 samples of RTT
time series. In the experiments, the size of probing packets is 69
bytes and the timeout is large enough (10 seconds) to make sure
no RTT samples are missed out. In each experiment, 50 succes-
sive data packets are sent out from the Pinger to the Pingee, and
the Pinger receives packets of the same size returned from the
Pingee if the packet is not lost. If a packet is received by the
Pinger, the corresponding RTT is sampled. Otherwise, the cor-
responding packet position is null and removed from the RTT
time series.

B. RTT Variation Prediction &;

To estimate RTO, we should also have the prediction of RTT
variation. In the implementation of the current ARMA algo-
rithm, the following equation is used for this purpose:

6ns1=(1—g)6n+gx |Rn— Rul, (13)

where g is a constant factor which is usually 0.25. RTO,,
is then calculated by (1). For an unbiased comparison with the
ARMA method, we adopt (13) for RTT variation prediction in
the MEP algorithm as well.

C. Experiment Results and Performance Comparison
For the MEP algorithm, RZ and RZ are determined as fol-
lows respectively

RE = (1 —7) xmin{Rn, Rn-1, -+ s Rn—it1},  (14)

Rg = (1 + 7) X min{Rna RTL—'la co )Rnwk+1}) (15)

where v = 0.2 and k = 4. We use two criteria, percentage
overhead (OH) and percentage error (ERR) for the comparison
of RTO estimation. Their definitions are

o - ZiBTO: ~ R)

=5 (16)
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Table 3. Experimental resuits | (Date: Monday, Sept. 24, 2001).

69

Pingee Pingee 10:00am 14:00pm 18:00am
Location Host OH (%) "ERR (%) OH (%) ERR (%) OH (%) ERR (%)
ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP
Nothern | 164.109.71.243 1994 | 22.84 0.00 0.00 | 2080 | 31.34 3.57 357 1808 | 2590 5.00 2.50
America 18.181.0.31 2109 | 16.11 0.00 2.00 1680 | 15.14 0.00 0.00 13.05 | 13.48 2.00 2.00
128231.56.110 2620 | 35.13 2.00 000 | 3651 | 37/00 .00 0.00 1438 | 1835 | 10.00 | 0.00
202.106.68.19 66.14 | 2310 417 417 372 | 1400 238 0.00 | 4147 | 40.19 2.63 0.00
Asia 202.112.144.70 17.64 | 12.28 236 0.00 5.06 8.62 540 2.70 646 | 9.70 8.57 2.8
202.108.249.206 | 8.60 9.85 0.00 0.00 1615 | 1408 | 2.77 2,77 | 3510 | 10.75 0.00 2.70
212.160.117.137 | 23.65 | 32.65 5.40 2.7 9.52 14.95 2.86 2.86 11.96 7.33 0.00 0.00
Europe 148.88.2.37 3779 5.63 1200 | 4.00 370 552 1200 | 4.00 277 | 7.68 10.00 | 6.
130.192.239.1 4196 | 28.03 2.04 0.00 3.33 970 0.00 2.00 874 599 0.00 2.00
Average 2545 | 20.62 3.13 1.43 1462 | 1259 3.80 1.99 17.11 | 15.93 424 2.01
Table 4. Experimental results I} (Date: Tuesday, Sept. 25, 2001).
Pingee Pingee 10:00am 14:00pm 18:00am
Location Host OH (%) ERR (%) OH (%) ERR (%) OH (%) ERR (%)
ARMA [ MEP | ARMA [ MEP [ ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP
Nothern | 164.109.71.245 5189 | 20.79 0.00 208 | 2988 | 34.82 .70 434 | 2280 | 2616 | 4.26 2.13
America 18.181.0.31 2120 | 27.07 0.00 200 | 2056 | 2049 0.00 000 | 19.24 | 1830 | 0.00 0.00
128.231.56.110 3501 | 2814 | 4.17 000 | 26356 | 28.17 6.00 2.00 1873 | 20.73 0.00 2.00
202.106.68.19 109.19 | 19.53 2.04 204 | 7030 | 3620 2.04 0.00 6.97 4.58 2.08 2.08
Asia 202.112.144.70 1220 | 1227 | 370 | 0.00 6.18 593 0.00 238 7.61 8.67 0.00 0.00
202.108.249206 | 4.92 327 0.00 0.00 9.05 841 2.00 2.00 8.85 6.44 0.00 2.17
212.160.117.137 | 50.73 | 13.61 236 000 | 8436 | 1904 0.00 0.00 1460 | 1415 2.08 2.08
Europe 148.83.2.37 797 1201 | 000 0.00 537 558 8.00 3.00 372 784 2.00 0.00
130.192.239.1 1278 | 14.34 2.00 4.00 1051 | 1249 2.04 204 13.08 | 10.33 0.00 0.00
Average 3393 | 16.89 1.60 112 | 2930 | 19.01 320 1.86 1341 | 13.04 116 0.94
Table 5. Experimental results 11l (Date: Wednesday, Sept. 26, 2001).
Pingee Pingee 10:00am 14:00pm 18:00am
Location Host OH (%) ERR (%) OH (%) ERR (%) OH (%) ERR (%)
ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP | ARMA | MEP
Nothern | 164.109.71.245 1239 | 16.74 6.38 4.26 19.79 | 29.16 2.78 0.00 | 2557 | 2001 227 0.00
America 18.181.0.31 1480 | 2041 2.00 0.00 15.60 | 21.32 0.00 0.00 15.77 | 14.34 0.00 2.00
128.231.56.110 3951 | 49.67 2.00 200 | 3742 | 40.60 3.00 200 | 2441 | 2499 5.00 0.00
202.106.68.19 7.78 5.53 2.00 0.00 | 3160 | 16.15 7.14 238 2028 | 24.15 0.00 2.08
Asia 202.112.144.70 1030 | 11.73 357 0.00 1262 | 12.64 0.00 270 | 48.46 | 34.30 343 3.48
202.108.249.206 | 1224 | 8.7 0.00 2.00 329 337 4.65 732 536 38 222 0.00
212.160.117.137 | 10637 | 12.72 6.67 333 6.72 11.32 571 0.00 | 3039 | 2953 | 10.53 5.26
Europe 14888.2.37 4.69 7.9% 300 4.00 4.61 250 | 0.00 0.00 3.90 10.44 3.00 6.00
130.192.239.1 771 11.43 4.00 2.00 743 774 2.00 0.00 8.07 13.78 6.00 0.00
Average 7398 | 2276 3.85 1.94 1556 | 16.31 3.06 1.04 | 2125 | 20.06 428 2.09
ERR = % , (17) no congestion on the network. In Fig. 2(a), the RTT increases

where m is the number of failed prediction for which RTO;
(predicted roundtrip timeout) is smaller than the real RTT(R;)
and N 1is the total number of returned data packets the Pinger
receives. From the above definitions, OH can be viewed as the
indicator of the overhead for waiting packets in detecting packet
loss. On the other hand, ERR is the ratio of the number of pack-
ets which would be rejected improperly to the total number of
returning packets received by the Pinger should the estimated
RTO be used. If the RTO estimate is too large, as a result, we
have a large OH. On the contrary, if RTO estimate is too small,
ERR will be high. A summary of the experimental results is
given by Table 2. The detailed results are shown in Tables 3, 4,
and 5. From these results, we can see that the MEP algorithm
has smaller OH and ERR than the ARMA method statistically.
In this part, we show the comparisons between the MEP and
ARMA algorithms graphically. Figs. 1(a), 2(a), 3(a), and 4(a)
are the typical curves of the measured RTT, the predicted one
using the ARMA method and the predicted one using the MEP
algorithm. Fig. 1(a) shows a typical scenario where there is

abruptly, grows gradually for a while and then suddenly jumps
down, which may be the result of network burst. It can be in-
ferred that the network is congested from the RTT curves shown
in Fig. 3(a) and Fig. 4(a).

For the scenario shown in Fig. 1(a), the RTT dynamics is
dominated by a base plus a noise process with weak patterns.
This is the situation on which the traditional ARMA method is
targeted. From the plot, the ARMA and the MEP algorithms
have similar performance. We cannot determine which scheme
is superior for this type of situations. However, for the scenarios
shown in Figs. 2(a), 3(a), and 4(a), where the RTT time series
show apparent structures and RTT evolves rapidly and signif-
icantly, it is clear that the ARMA algorithm cannot track the
RTT dynamics since the dynamics of ARMA itself is too slow.
On the contrary, the MEP method works very well and much
better than ARMA.

Figs. 1(b), 2(b), 3(b), and 4(b) are the corresponding curves
of the measured RTT, the estimated RTO using ARMA and the
estimated RTO using MEP. From Fig. 1(b), the performance
of both ARMA and MEP is at the same level. However, for
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Figs. 2(b), 3(b), and 4(b), the OHs of MEP are much smaller
than those of ARMA while the ERRs are approximately at the
same level. From Fig. 2(b), both the OH and ERR of MEP is
smaller than those of ARMA.

V. CONCLUSIONS

The great advantage of the conventional ARMA algorithm
for RTT estimation is its low computing cost, however, this
parameter-fixed model is not sufficient for all scenarios and is
especially insufficient for rate-based TCP-friendly transport pro-
tocols for real-time applications. In this paper, we introduce a
parameter-varying model for RTT prediction based on the in-
formation theory and the maximum entropy principle. Because
the coefficients of the proposed RTT model are updated dy-
namically, the model is adaptive and can track RTT dynam-
ics quickly. From the experiments, the MEP algorithm has
similar performance to ARMA when RTT dynamics is domi-
nated by a base plus a noise process, on which the traditional
ARMA method is targeted. However, when RTT evolves rapidly
and significantly, the MEP algorithm works much better than
ARMA in terms of both RTT prediction and RTO estimation.

Since the solution to the coefficient of the MEP model is only
a simple polynomial, the computing cost of updating the coeffi-
cients will not be a big burden on real-time implementation.
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