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Jellyfish: A Conceptual Model for the AS Internet
Topology

Georgos Siganos, Sudhir Leslie Tauro, and Michalis Faloutsos

Abstract: Several novel concepts and tools have revolutionized our
understanding of the Internet topology. Most of the existing efforts
attempt to develop accurate analytical models. In this paper, our
goal is to develop an effective conceptual model: A model that can
be easily drawn by hand, while at the same time, it captures sig-
nificant macroscopic properties. We build the foundation for our
model with two thrusts: a) We identify new topological properties
and b) we provide metrics to quantify the topological impertance
of a node. We propose the jellyfish as a model for the inter-domain
Internet topology. We show that our model captures and repre-
sents the most significant topological properties. Furthermore, we
observe that the jellyfish has lasting value: It describes the topology
for more than six years.

Index Terms: Internet models, Internet topology, power-laws,
topology generators.

I. INTRODUCTION

“How can we represent the network graphically in a way that
a human can draw or understand?” “How can we define a hier-
archy in the Internet topology?”

These are the two main questions that we address in this
paper. The overarching goal is to provide a conceptual model
for the Internet topology at the autonomous system (AS) level.
Most current research on topology attempts to maintain and de-
scribe the information in all its detail. However, a simple con-
ceptual model is also important, especially when it captures
graphically many fundamental properties. An example of a suc-
cessful conceptual model is the bow-tie model used to describe
the structure of the world wide web [1].

Conceptual models demonstrate the following paradox: They
are difficult to think of, but once they are presented they seem
obvious. In our case, the difficulty lies in identifying an “an-
chor” and a “compass”: A well-defined starting point and a way
to explore the topology systematically. The main challenge is
that the topology is large, complex, and constantly changing.
Even with the introduction of power-laws, we do not have a
comprehensive model of the topology [2]-{4]. Second, although
the Internet is widely believed to be hierarchical by construction,
it is too interconnected for an obvious hierarchy [5]. Several ef-
forts to visualize the topology have been made [6], [7], but their
goal is slightly different from ours: They attempt to show all
the available information. In addition, several of those models
target the topology at the router-level. These visualizations are
useful for multiple different reasons, but they do not meet our
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requirements: They can not be recreated manually and they do
not provide a memorable model.

In this paper, we propose a jellyfish structure as a conceptual
model for the Internet topology, extending our work in [8]. The
value of the model lies in its simplicity and its ability to capture
graphically many topological properties. We use real Internet in-
stances for over six years for our experiments. First, we identify
anumber of new interesting topological properties that guide the
development and validate our model. Second, we identify met-
rics for the topological “importance” of a node. We use these
metrics to validate our model and establish an anchor: A highly
interconnected group of important nodes. Third, we show how
the topology can be mapped to a jellyfish. Fourth, we observe
that the jellyfish structure has not changed significantly during
more than six years. The network grows “horizontally” by pop-
ulating its layers, and not by adding new layers. Finally, using
our model, we show how we can evaluate graph generators. We
find that one of the best graph generators fails to capture the
macroscopic structure of the Internet.

The rest of this paper is structured as follows. Section IT
presents some background and previous work. Section II
presents several interesting topological properties, which guide
the development and justify our jellyfish model. Section IV de-
velops a conceptual model for the Internet topology. Section V
studies the time evolution of the Internet regarding the proper-
ties of our model. Section VI compares the Internet topology
with generated topologies. Finally, Section VII concludes our
work.

II. BACKGROUND

The Internet consists of domains or ASes (autonomously ad-
ministered sub-networks of the Internet). The topology of the
Internet can be studied at two different levels of granularity. At
the router level, we represent each router by a node in the graph.
At the inter-domain level, a single node represents each domain
and each edge indicates whether the two ASes are directly con-
nected. Here, we study the topology at the inter-domain level or
AS level. We model the topology using an undirected graph.

Definitions and symbeols. The degree of a node is defined as
the number of edges incident to it. The distance between two
nodes is the number of edges on a shortest path between the
two nodes. The core of the graph corresponds to the clique of
the highest degree nodes and is defined in more detail in Sec-
tion IV-A. The effective eccentricity, ecc(v), of node v is the
minimum number of hops required to reach at least 90% of the
nodes that are reachable from that node.! Note that important

L The effective eccentricity as defined here has already been used successfully
to analyze topological properties of the Internet at the router level [9].
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Fig. 1. The evolution of the size of the Internet.

nodes have low eccentricity. In the rest of this paper, we refer
to effective eccentricity simply as eccentricity. The significance
of a node attempts to capture both the number and the impor-
tance of neighbors. A simple recursive algorithm can be used to
calculate the significance [10], which is similar to the page rank
notion used by Google to rank web pages. Initially, all nodes
start with equal significance. At each step, the significance of
each node is set to the sum of the significance of its neighbors.
At the end of each step, all values are normalized so that their
sum equals to one. We stop when the significance of the nodes
converges to a set of values. Note that this is equivalent to find-
ing the eigenvector of the maximum eigenvalue of the adjacency
matrix of the graph [10]. We define relative significance as the
product of the significance of a node and the number of nodes
in the graph.? In the rest of this paper, we focus on the relative
significance and we use the terms significance and relative sig-
nificance interchangeably. In order to study the importance of a
node we will use the degree, the eccentricity and the significance
of a node.

In some cases, we will use power-laws to characterize skewed
distributions. A power-law is an expression of the form y o< z¢,
where ¢ is a constant, z and y are measures of interest and x
stands for “proportional to.” We use linear regression to fit a
line to a set of two-dimensional points [11] and the least square
errors method. The validity of the approximation is indicated
by the correlation coefficient, which is a number between —1
and 1. We refer to the absolute percent value of the correlation
coefficient value, for which a value of 100% indicates perfect
linear correlation.

Graph instances. We analyze real instances of the Internet
topology from 1997 to 2003. We use the data collected from the
Oregon routeviews project [12]. Although the Oregon has been
reported to miss edges between ASes [13], it is widely used in
many AS studies [5], [7], [13]-[15]. The reason for its popular-
ity is that it is the only archival of data that can provide infor-

2The definition of relative significance facilitates the interpretation of its value
by establishing one as a reference value. If we assume that all nodes have equal
importance, then the relative significance values would be equal to one. There-
fore, a node with relative significance greater than one has more importance than
its “fair share.”

mation for the evolution of the topology, and also it captures in
a consistent way the nodes of the topology.

The network has grown significantly over the six years of ob-
servation. In Fig. 1, we plot the network size of the three real
graphs for most of our experiments. The growth of the Internet
in the time period we study is almost 516%. We highlight three
instances that we will use more often in this paper:

1. Int-11-97: November of 1997 with 3015 nodes and 5156
edges and 3.42 avg. degree.

2. Int-06-2000: June 2000, 7864 nodes and 15713 edges and
3.996 avg. degree.

3. Int-07-2003: July 2003, 15634 nodes and 34689 edges and
4.43 avg. degree.

A. Previous Work

Modeling the Internet topology has received significant atten-
tion recently. However, most of this work does not attempt to
develop a conceptual model which is the target of this paper.

Real network studies and properties. Faloutsos et al. [2]
identified several power-laws that describe concisely distribu-
tions of graph properties such as the node degree. Intuitively,
their work shows that the topological properties show high vari-
ability with few elements having very high values, while the
majority of them has below-average values. In an earlier ef-
fort, Govindan and Reddy [16] study the growth of the inter-
domain topology of the Internet. They classify the domains in
a 4-tier hierarchy based on degree. Albert er al. [17] explore
the resilience of the network using the average distance between
nodes as a metric. Chen et al. [13] express concerns about the
completeness and accuracy of the topology from the Oregon
project. Tangmunarunkit ef al. [S] examine macroscopic topo-
logical properties and attempt to develop a framework for com-
paring topologies.

Theoretical studies. A fascinating study by Reittu and Nor-
ros [18] provides theoretical support for our model. Their study
proves that graphs with power-law degree distribution and ran-

.domly connected nodes (given the power-law degree distribu-

tion) will also have the following properties: a) There exists a
highly connected core and b) the diameter of the graph is pro-
portional to log log N. Another study by Cohen and Havlin [19]
concurs that small world networks are expected to have small di-
ameter and distances. Our data validates both these theoretically
predicted properties. Mihail ez al. [20] prove a surprising rela-
tionship between the eigenvalues of the adjacency matrix and
the degree of the nodes. Recently, there exist a number of theo-
retical papers [21]-[23] that propose the use of hierarchical net-
work models to characterize graphs with a power-law degree
distribution. .

Most recently, several theoretical studies on complex net-
works address the problems of core identification and hierarchy
in social and life science networks [24], [25].

Visualization efforts. There have been few visualization ef-
forts compared to the measurement activity [6], [7], [26]. Most
of these efforts attempt to-show the entire graph in all its detail.
Furthermore, some of these efforts examine the topology at the
router level [6], [26].

Graph generators. We can distinguish Internet models in
two categories depending on whether they consider power-laws
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Fig. 2. The logarithm of relative significance versus the effective eccen-
tricity for Int-07-2003.

in their degree distribution. The early graph models assume
a uniform degree distribution [271, [28]. Zegura et al. [29]
introduce a comprehensive model that includes several previ-
ous models and combines simple topologies in a hierarchi-
cal structure. After the discovery of power-laws, several mod-
els have been proposed to capture the skewed degree distribu-
tion [30]-[36].

Recently, two research efforts study the structure of the logi-
cal AS graph, which is a directed graph that represents the busi-
ness relationships (i.e., customer—provider) apart from the con-
nectivity. Gao et al. [15] develop a structural model of the di-
rected AS graph. Subramanian et al. [37] propose a five level
classification of ASes based on the commercial relationships.

III. TOPOLOGICAL PROPERTIES

In this section, we identify several topological properties that
provide guidelines for the development of our model. First,
we study metrics to quantify the topological importance of a
node. Second, we study the spatial distribution of the one-degree
nodes in the graph. Third, we study the connectivity of the
graph.

In order to study the topological importance,” we propose
three metrics. The degree of a node is a straightforward met-
ric of the importance. Naturally, a high degree suggests higher
importance. Additionally, we explore the meaning and the rela-
tionships between the eccentricity and the significance.

The degree and the significance capture different topolog-
ical properties. The degree and the significance are related, but
at the same time, they capture significantly different aspects of
the topology. The degree of a node captures the quantity of the
neighbors, while the significance considers also the “quality” of
the neighbors. For example, if we order the nodes according
to significance and according to degree we obtain two drasti-
cally different sequences. Here, we will limit ourselves to an
indicative example. In graph Int-11-97, we have a node with
degree 3 and significance 103.7, and a node of degree 10 and
significance 1.305. The first node* connects to the three most

3

3Note that we are focusing on the fopological importance of a node, which
is not necessarily related to other types of importance such as financial or func-
tional (amount of traffic that goes through a node).

4Note that significance here is according to our definition, and captures the
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Fig. 3. The average number of one-degree neighbors versus the degree
of such node.

significant nodes of the graph, while the second node does not
connect to any node of high significance.

Significant nodes tend to be in the center of the network.
The significance and the effective eccentricity are correlated. In
Fig. 2, we plot the logarithm of the significance versus the ef-
fective eccentricity. We observe that nodes of high significance
tend to have low effective eccentricity. Intuitively, this can be
seen in two ways: Central nodes are also significant, or that sig-
nificant nodes gravitate towards the center.

The effective eccentricity of adjacent nodes cannot differ
by more than one.

Lemma 1: Let G = (V, E) be a connected undirected graph
and (u,v) an edge in E, then the effective eccentricity of nodes
1 and v can not differ by more than one:

lece(u) — ece(v)| < 1.

This lemma is easy to prove, since for any node x that node u
can reach in h hops, node v can reach it with at most h 41 hops.
This lemma helps us interpret the difference between the ec-
centricity of adjacent nodes. We can estimate the position of
adjacent nodes with respect to the center of the network. When
does this maximum difference in eccentricity appear? It does,
when all paths are passing through a node. For example, con-
sider a node of degree one: Its eccentricity is equal to the ec-
centricity of its single neighbor plus one. We will refer to this
observation when we evaluate the model we develop.

A. Location of One-Degree Nodes

The most common way to picture a hierarchy is to think of a
social or military structure, where each class member connects
to nodes of comparable importance. Each class connects to an
immediately higher and lower class. Please refer to Appendix II
for a more detailed discussion on this model, which we call the
cast or broom model. It turns out that the Internet topology
deviates significantly from such a hierarchical model.

One-degree nodes are scattered all over the network. We
examine the spatial distribution of the one-degree nodes in the
graph. Note that one-degree nodes, are approximately 35-45%
of the nodes. In Fig. 3, we plot the average number of one de-
gree nodes, that are adjacent to a node, versus its degree. The

topological significance and not the role of the node in the forwarding of traffic.
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qualitative observation is that one-degree nodes connect to both
high and low degree nodes. Namely, the connectivity is not se-
lective on the degree: Nodes of the lowest degree can connect
directly to the top nodes.

To better understand and characterize the one degree nodes,
we examine the distribution of the one degree neighbors of a
node. We use the complementary cumulative distribution func-
tion (CCDF) of the one degree neighbors of a node, which we
denote as O,.. We plot the O, versus the number of one degree
neighbors r in log-log scale in Fig. 4 for graph Int-07-2003. The
correlation coefficient is 99.5% for this instance and above 98%
for all the instances we examined. This observation can be stated
as the following power-law.

Power-Law 4: Given a graph, the CCDF O,. of the one de-
gree neighbors r of a node, is proportional to the  to the power
of a constant 6.

O, x 719,

A natural question to ask is whether this power-law relates to
the power-law of the degree distribution. Although there is a
correlation between the degree of a node and the number of its
one-degree neighbors, we do not observe a straightforward rela-
tionship such as a proportionality.
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Fig. 6. The CCDF distribution of the paths versus the path length be-
tween the nodes with degree 590 and 524 in log-log scale (Int-11-97).
Correlation coefficient 99.8%.

B. The Network Connectivity

To further examine the structure, we quantify the connectivity
with two complementary metrics: a) The topological distances
of the graph, b) the number of alternative paths that exist be-
tween two nodes.

Topological distances. The distribution of the topological
distances has remained practically the same. We find that the
distances in the network do not change significantly in the
time period we examine. This is somewhat counter-intuitive for
every-day thinking, where we expect something that increases
in size to increase in all its dimensions.

In Fig. 5, we plot the percentage of nodes we can reach for
a given number of hops versus the day that each instance was
collected. Each line corresponds to a different number of hops.
We see that the neighborhood of a node as a percentage of the
total nodes is either constant or increasing. For example, we
find that within five hops we can always reach more than 95%
of the nodes, and at least 45% of the nodes are within three hops.
Given that the network increases, it is clear that the size of the
neighborhood in absolute size is increasing for all the hops.

Properties of alternate paths. We study the number of al-
ternate paths between a given pair of nodes, which provides a
different aspect of the connectivity. There are several ways of
defining alternate paths depending on the intended use, such as
node-disjoint, edge-disjoint, or shortest paths only. Here, we are
mostly interested in the topological insight we can obtain from
the analysis.

Greedy shortest-path discovery method. We decided to em-
ulate the behavior of a network operation, namely that of a pos-
sible fault-tolerant routing protocol. Such a protocol may select
the shortest path as primary path, and the second shortest path
as back up. We restrict the back up path to be node disjoint
with the primary. Following this, in our study, for each pair of
nodes, we iteratively find and remove the shortest path, except
the end points. We stop when we cannot find any more paths.
Note that we have also considered another approach based on
the max-flow method, where we maximize the number of alter-
nate node-disjoint paths, but the results were comparable and
are not shown here.

We find that the relationship between the number of node-
disjoint paths and path length between a pair of nodes w and v is
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skewed. In Fig. 6, we plot the relationship between the CCDF
distributions of the number of paths versus the path length for
a pair of nodes. We want to capture this skewed path distribu-
tion concisely in a qualitative way. This leads us to state the
following power-law as a rough approximation of the above ob-
servations. Recall that our focus is the topological structure and
not an accurate model for the path length distribution.

Approximation Power-Law 5: The complementary cumula-
tive distribution function of the number of paths R, ,, of length
l,» between a pair of nodes v and v (found by our greedy
shortest path discovery method) is inversely proportional to the
length of that path [, ,, to the power of a constant m.

—m
Ry x luw .

The failure of the doughnut model. The value of the above
observation is its insight on the macroscopic structure of the
topology. Let us assume that the Internet topology is like a
roughly homogeneous “doughnut,” which we discuss further in
Appendix II. In this model, for any two nodes we would have
two equally popular path lengths, each corresponding to. one
side of the doughnut. In that case, the path length distribution
would not follow the power-law we observe in practice.

IV. THE JELLYFISH MODEL

In this section, we integrate all the observations and insight
of the previous sections into a conceptual model. First, we iden-
tify a topological center and we classify nodes into layers with
respect to the center. Then, we show how the jellyfish model
captures all the properties that we examined.

A. Core, Layers, and Hierarchy

The first step in defining a hierarchy is to identify a starting
point. A natural point to look for a center is the most impor-
tant node. In fact, we observe that the highest degree nodes are
adjacent to each other. We define the core as a cligue of high-
degree nodes with the following procedure. We sort nodes in
non-increasing degree order. We select the highest degree node
as the first member of the core. Then, we examine each node in
that order; a node is added to the core only if it forms a clique
with the nodes already in the core. In other words, the new node
must connect to all the nodes already in the core. We stop when
we can not add any more nodes. This way, the core is a clique
but not necessarily the maximal clique of the graph.

Why do we define the core as a clique? Intuitively, the clique
makes the representation more useful when we consider node
distances, and in particular we can prove easily upper bounds for
the distances of two nodes, as we discuss later in Section I'V-B.
A path passing from the clique will have at most one hop
through the clique. Thus, the distance between two nodes is
bounded from their relative from the clique plus the one hop
in the clique. In Appendix I, we explore alternative definitions
for the core by relaxing the stringent clique requirement. Re-
cently, a work by Bar et al. examines the definition of an Inter-
net core [38].

We now classify the rest of the nodes according to their prox-
imity to the core. We define the first layer to be all the nodes

Core Layer-1 Layer-2

—— Effective eccentricity
~=- log relative significance
—— log degree

Fig. 7. The average importance of each layer: log of the average de-
gree, average effective eccentricity and log of the average relative
significance (Int-07-2003 instance).

adjacent to the core. Similarly, we define the second layer as
the non-labeled neighbors of the first layer. By repeating this
procedure, we identify six layers if we count the core as a layer
zZero.

Node distribution across layers. Table 1 shows the distribu-
tion of the nodes for three Internet instances. The node distri-
bution across layers does not seem to change significantly in the
instances we examine. We make two interesting observations:

e Approximately, 80-90% of the nodes are in the first 3 layers.
e We find six layers in all the instances we examine, and de-
spite the significant network growth.

These two observations strongly suggest that the network
grows “horizontally” by populating its layers and not by adding
more layers. We elaborate on this point in the next section.

The effectiveness of the classification. We want to examine
the effectiveness of our classification and explore its topologi-
cal meaning. First, we find that the layers differ significantly in
topological importance, which indicates that the classification
captures some elements of the topological structure. We use our
three metrics to quantify the importance of each layer. Fig. 7
shows the average values of the effective eccentricity, the loga-
rithm of the degree, and the logarithm of the relative significance
for each layers for the Int-07-2003 instance. All metrics suggest
that the importance of the nodes of each layer decreases rapidly
as we move away from the core. Note that for the average degree
and the relative significance the scale is logarithmic.

It is important to locate and study separately the one-degree
nodes. First, the one-degree nodes are not useful in terms of con-
nectivity to the rest of the network. Second, one-degree nodes
are a large percentage of the network, and it is important to clar-
ify and isolate their role. We separate each layer into two classes:
a) The multiple-degree or shell nodes, and b) the one-degree or
hang nodes. We refer to the one-degree nodes hanging from k-th
shell as the k-th hang class. The layers and the shells have the
following relationship:

Layery, = Shell, + Hangy, 1.
For example, shell-0 is the core, and its one-degree neighbors

are denoted as hang-0, while the rest of the neighbors constitute
shell-1.
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Table 1. Distribution of nodes in layers for three Internet instances.

Instance
Int-11-1997 Int-06-2000 Int-07-2003
Layer No. | Nodes | % of nodes | Nodes | % of nodes | Nodes | % of nodes
Core/Layer-0 8 0.23 14 0.176 13 0.08
Layer-1 1354 44.90 3659 46.25 7330 46.27
Layer-2 1202 39.866 3090 39.05 7116 45.51
Layer-3 396 13.134 1052 13.29 1078 6.89
Layer-4 43 1.425 86 10.87 96 0.61
Layer-5 12 0.398 10 0.12 1 0.0063
Table 2. Distribution of nodes in shell and hang classes.
Instance
Int-11-1997 Int-06-2000 Int-07-2003
Layer ID | Nodes [ % of nodes | Nodes [ % of nodes | Nodes | % of nodes
Core/Shell-0 |8 0.23 14 0.176 13 0.08
Hang-0 465 15.42 798 10.08 1174 75
Shell-1 889 29.49 2861 36.16 6156 39.37
Hang-1 623 20.66 1266 16 2821 18.04
Shell-2 579 19.2 1824 23.05 4295 27.47
Hang-2 299 9.92 662 8.36 808 5.16
Shell-3 97 322 390 4.92 270 1.72
Hang-3 41 1.36 74 0.93 84 0.53
Shell-4 2 0.66 12 0.15 12 0.07
Hang-4 12 04 10 0.12 1 0.006
10 /K\#%
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Fig. 8. The average importance of each shell: log of the average degree,
average effective eccentricity and log of the relative significance (int-
07-2003).

Table 2 shows the size of each group of nodes in our classifi-
cation.

The topological importance of shell decreases as we move
away from the core. In Fig. 8, we plot the logarithm of the av-
erage degree distribution, the logarithm of average relative sig-
nificance, and the average effective eccentricity of each shell.
All metrics suggest that the importance of shells near the core is
higher. Note that for the average degree distribution and signif-
icance the scale is logarithmic so a difference of one is substan-
tial. This analysis indicates that our shells manage to cluster the
nodes according to their topological importance.

Most of the connectivity is towards the center. Observe that
the average effective eccentricity increases by approximately 0.5

- o ®

Fig. 9. The Internet topology as a jellyfish.

to 1 as we go away from the core. Recalling the lemma of Sec-
tion III, an increase in effective eccentricity of approximately
one indicates that the outer node is approximately one link fur-
ther away from the core. Intuitively, nodes at the outer shells
need to go through the previous shell for most of their shortest
path connections. This suggests that our selection of the core
and the layers captures effectively the direction of the paths.

B. The Jellyfish Model

We use the shell-hang classification to define the jellyfish
model. The core is the center of the head of the jellyfish sur-
rounded by shells of nodes. Fig. 9 shows a graphical illustration
of this model. The hang nodes form the tentacles of the jellyfish.
We make the length of the tentacle longer to graphically repre-
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Fig. 10. The percentage of the different types of edges classified ac-
cording to their adjacent nodes (Int-07-2003).

sent the concentration of one-degree neighbors for each shell.
We can color each shell according to its importance.

From Table 2, we can see how the nodes are distributed in the
different layers of our model. We observe that 80-90% of nodes
are in the first few layers: Core, shells one and two, and hang
one and two.

The jellyfish model provides upper bounds of the node dis-
tances. By construction, the model can provide upper bounds
on the distances between nodes. For example, we can state
that the nodes in the first three layers (80-90% of nodes) are
within 5 hops from each other.’ In the worst case, the shortest
path between two nodes in layer two would consist of nodes in:
Layer-2, layer-1, core, core, layer-1, and layer-2. The distance
is bounded by five, but it could be less than five. Note that this
upper bound seems to be very close to empirical observations,
that indicate that 90% of the nodes are within 5 hops [2]. Gen-
eralizing, we can prove the following lemma.

Lemma 2: (Upper Bound of Distance) The distance be-
tween nodes v of layer-k,, and w of layer-k,, is bounded above
as follows:

d(v,w) <ky + ko + 1.

The proof is straightforward if we consider the construction
of the layers.

In the jellyfish model, 70% of edges are between different
node layers. In Fig. 10, we plot the percentage of edges that
exist between and within layers. We find that 70% of the edges
connect nodes between different layers. We think of these edges
as vertical with respect to the jellyfish hierarchy. In contrast, ap-
proximately 30% are horizontal to the hierarchy providing con-
nectivity between nodes of the same class. '

Let us examine the vertical edges in more détail. The con-
struction of the jellyfish model is a breadth-first type of network
exploration. The breadth-first tree consists of N —1 edges, where
N is the number of nodes. The number of edges in the graph is
approximately: 2N (average degree close to four). Therefore,
50% of the edges are part of the breadth first tree of the jellyfish.
Recall that 70% of the edges are vertical edges. This means that
the other 70 — 50 = 20% of the vertical edges are “redundant”
edges.

5We refer to layers instead of the equivalent shell and hang for simplicity.

R 5/11/1997

I 3/1/1998
C—111/30/1998
B 1301999
[—17/15/1999
B 10/10/1999
N Jun-00

% of total graph

o
Core Hang-0 Shelll Hang-1 Shell2 Hang-2 Shell3 Hang-3 Shell4 Hang-4

Shell/hang
Fig. 11. The distribution of nodes over time grouped by class.

Why is the jellyfish a good model? It should be clear by.
now that this model is driven by several empirical observations.
We provide an overview of the topological properties that the
jellyfish model captures. As an intuitive model, the jellyfish rep-
resents these properties in a graphical and qualitative way.®
1. Core: The topology has a core of highly connected

topologically-important nodes, which is represented by the
center of the jellyfish cap.

2. Five layers: The distances between nodes are small; maxi-
mum distance less than 11 hops, and 80% of nodes are within
5 hops.

3. Center-heavy: 80% of the nodes are in the first 3 layers.

4. One-degree nodes: There is a non-trivial percentage
(35-45%) of one-degree nodes, which are scattered every-
where (representation of power-law 4).

5. The importance of the nodes decreases with their distance
from the core.

6. The model provides good upper bounds of the distances be-
tween nodes.

An additional strength of the model is that it has persisted
in time. Its structure and the node distribution across classes has
not changed qualitatively during the years of our study. We elab-
orate on the model evolution in the next section.

V. THE EVOLUTION OF THE JELLYFISH

We study the evolution of the Internet structure for approx-
imately three years. We find that the statistical properties of
the jellyfish model change relatively little over time. Second,
we find that the node and edge distribution across the jellyfish
classes remains approximately the same. Third, we find that the
classification of individual nodes does not change significantly
within a three to eight month interval. Finally, we study the iden-
tity of the nodes that constitute the core.

Distribution of nodes over time: Horizontal growth. The
first striking observation is that the growth does not create new

SNote that not all properties listed below can be deduced directly from the
model, but the model can act as a intuitive reminder.
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Table 3. The change in the node classification between consecutive instances.

Nov97 | Apr98 | Nov98 | Apr99 | July99 | Oct99
v/s v/s v/s v/s v/s v/s
Apr98 | Aug98 | Apr99 | July99 | Oct99 | June00
No change 1845 2829 3278 3986 4289 3972
Total change 968 651 887 919 963 1615
Hang to shell 343 228 395 312 320 634
Shell to hang 148 155 227 193 265 382
Drop in shell 119 69 97 152 54 256
Increase in shell 117 97 60 62 171 140
Drop in hang 91 38 67 155 27 125
Increase in hang 150 64 41 45 126 78
O 8/11/1997 B 43011998 edges over time with respect to our model.® The main observa-
O 811998 [J 1153071998 tion is that the edge distribution among the layers stays within
. 5 4/30/1999 S 7/15310999 +5% of the average of each layer. Fig. 12 shows the edge distri-
0 1071071595 fun- bution over time. Observe that the maximum number of edges
£ 55 are between core and layer-1 and between layer-1 and layer-2.
E” 30 These two groups account for about 65% of all the edges in the
5 25 ] graph.
3 204 Which ASes are in the core? We find that there are 20 nodes
gﬁ’ 15 - that appear in the core at least once in the eight instances we
E 10 4 examine. Among them, only four nodes appear in all eight in-
Tos ] stances. The maximum number of nodes in the core in any in-
0 stance was 14 and the minimum was 8. Here are the most inter-
& 4’»"\ ﬁ@“\ @’W & & & & & esting observations:
) \ 3 3 3 & =) & F
o Qo@“’ é,\“’ é,\“’ E TSP R ® B * e The maximum number of nodes in the core is 14 in June
N N IR SN U N 2000, while the minimum is 8 in November 1997 and August

Fig. 12. The distribution of edges over time grouped by type.

layers: The network grows horizontally. The second observa-
tion is that the distribution of the nodes in each class remains
approximately the same, see Fig. 11. The percentage of nodes
in each category is within £5% with respect to the average of
the category’ over the 8 instances and Fig. 12 shows the average
node distributions over time.

Changes in the classification of individual nodes. The clas-
sification of most of the nodes in the jellyfish model does not
change significantly within a three to eight month interval. Ta-
ble 3 shows the results of comparing multiple pairs of instances.
We list the number of nodes that have remained in the same
class, or changed classes. In case of change, we have several
different types depending on whether the move was from a shell
to a hang category or between different shells, etc. Naturally, we
consider only nodes that appear in both instances under compar-
ison. We find that most of the nodes (about 60% to 80%) main-
tain the same classification. The second largest type of change is
nodes going from a hang to a shell category. This suggests that
the existing nodes become more connected with time possibly to
increase their fault-tolerance, which has been an independently
observed trend [39].

Edge distribution over time. We look at the distribution of

"Note that the 5% refers to the total number of nodes, and not 5% of the
average of the class. With this definition, a change from 30% to 35% is within
5%.

1998.

o There were four nodes that are always in the core: AlterNet,
Cable and Wireless, SprintLink, and GTE Internetworking.
These nodes also constitute the highest-degree nodes in the
core, except in June 2000 when AT&T (572) exceeded GTE
(426).

e The node with the smallest degree in the core was Exodus
communications (53) in April 1998.

VI. THE IMPORTANCE OF THE JELLYFISH MODEL

So far, we showed that the jellyfish can be used to describe the
Internet in a consistent way for the last six years. In this section,
we demonstrate the usefulness of jellyfish. There are two param-
eters that we need to investigate. First, we try to answer whether
all graphs can be described using the jellyfish model that we
found in the previous sections. Ideally, jellyfish should be able
to distinguish among different type of graphs. We try to answer
this in a qualitative way by using simple regular topologies, and
we show that not all topologies can be characterized as jellyfish.
Second, we check whether our model can be used to distinguish
among power-law graphs.® Using two popular graph generators,
we show that graphs that follow approximately the same power-
law distribution can have significant different macroscopic prop-
erties, and can be distinguished using jellyfish.

8We refer to layers instead of shell-hang classes to simplify the plot.

9By power-law graphs, we mean graphs that their degree distribution follows
a power-law.
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Table 4. Distribution of nodes in shell and hang classes.

Instance
GLP Int-06-2000 PLRG
Layer ID Nodes | % of nodes | Nodes | % of nodes | Nodes | % of nodes
Core/Shell-0 21 0.2 14 0.176 11 0.13
Hang-0 1885 23.82 798 10.08 565 7.1
Shell-1 1672 21.13 2861 36.16 2346 29.6
Hang-1 3371 42.6 1266 16 1298 16.4
Shell-2 688 8.7 1824 23.05 2305 29.13
Hang-2 221 2.79 662 8.36 525 6.6
Shell-3 3 0.037 390 4.92 325 4.1
Hang-3 3 0.037 74 0.93 125 1.5
Shell-4 0 0 12 0.15 41 0.51
Hang-4 0 0 10 0.12 23 0.29
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Can any graph be modeled as a jellyfish? For every graph,
we can pick a center and compute its layers. On the other hand,
not every graph can match the Internet profile, i.e., the num-
ber of layers and the distribution of nodes among these layers.
For example, let us consider some regular topologies such as
a square mesh, a complete binary (or k-ary) tree, a clique,!”
and purely random graphs. None of these graphs will fit the
above description of the jellyfish in all its aspects. As an exam-
ple, we will mention a few of the more pronounced differences.
First, there is no natural central point to place the core. Even if
we define an arbitrary core, there are also other properties that
will be violated. The mesh and the tree will have a large num-
ber of shells proportional to O(v/N) or O(log N), respectively.
More importantly, when the size of the network would double,
the number of layers and shells would increase, which does not
happen here. The clique also does not fit the jellyfish profile:
It has only one layer, and no one-degree nodes. We have also
seen other network models which do not match this profile such
as the strictly hierarchical model, and the doughnut model in
Appendix II.

A. Power-Law Graph Generators

We can use the jellyfish model as a test of the realism of In-
ternet like graphs. We will use the GLP methodology proposed
in [33], and the PLRG approach proposed in [32]. The GLP
approach depends on the preferential model, and it is the most
recent proposed generator and is considered to be the state of
the art. On the other hand, the PLRG generator is based on an
interesting theoretical model for scale free graphs, and takes the
degree distribution as a given. Note that in [33], they compared
the two generators and found that the best generator is the GLP.
They showed that PLRG fails to capture properties like the char-
acteristic path length and the clustering coefficient. We show
that GLP does not capture the macro structure that we found us-
ing jellyfish. Incidentally, PLRG seems to pass the test, although
it fails other properties. Therefore, our jellyfish model is an ex-
cellent tool to distinguish graphs.

We use the Brite generator [40] for the GLP model, which

10Varying these models by adding or removing a few edges or nodes in a
uniformly distributed way will not reconciliate the differences with the jellyfish
in most cases.

includes an implementation of this model.'! We have imple-

mented PLRG. In order to compare the Internet topology with

the generators, we will use the Int-06-2000 graph. We want
to generate a topology that would have the same properties as

Int-06-2000. Following the methodology presented in [33], we

use the following parameters: p = 0.434 and 8 = 0.661 for the

GLP. For the PLRG, we simply use the degree distribution of

Int-06-2000.

The correlation coefficient for the degree power-law plot is
97.6% for the GLP with slope a = —1.092. For the PLRG plot,
the correlation coefficient is 99.7% and the slope is a = —1.243.
For the Int-06-2000 the correlation coefficient is 99.7% and the
slope is @ = —1.163.12 In Table 4, we have the decomposition of
the graphs using the jellyfish model. These results clearly show
that the generated graph using the GLP methodology is qual-
itatively different than the Internet graph. On the other hand,
PLRG seems to maintain similar structure according to the jel-
lyfish model. The only difference between PLRG and Int-06-
2000 is that the clique is smaller, having only 11 nodes, and that
we have a slightly smaller shell-1 and bigger shell-2.

Where does GLP fail to model the Internet? The main
difference between GLP and the Int-06-2000 can be summarized
as following:

e The core of the network is much bigger in GLP compared to
the Internet. More specifically, we have 21 nodes in the core
for the GLP, while only 14 nodes in the Int-06-2000.

e The number of hanging nodes (degree one) far out-exceeds
the number of shell nodes. The analogy is approximately
70% hanging nodes to 30% shell nodes. In the case of the
Int-06-2000, we have the opposite result.

e The GLP topology has only up to 5 layers, with the Sth layer
having only 3 members, while the Int-06-2000 has 6 layers.

Using our analysis, we can conclude that jellyfish is an excel-
lent tool to distinguish among generators into two classes, those
that can capture the macro structure of the Internet and those

1 Note that the GLP model in the Brite generator is not exactly the same as
described in the original paper. The difference lies in that the number of edges
of a new node can be either one with probability 87%, or two with probability
13%. We updated the model used in brite to reflect the original approach.

12Note that the PLRG doesn’t have the exact same degree distribution as the
Int-06-2000. When we generate the topology using PLRG, we might pick to
connect two nodes that are already connected, so in this sense we have fewer
edges in the final graph.
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Fig. 13. Significance of the core versus relaxing the clique constraint by
n edges.

that can not.

VII. CONCLUSIONS

In this paper, we develop a simple and conceptual topologi-
cal model for the inter-domain Internet topology. Our work has
five components of independent interest. First, we present and
study three metrics of the topological importance of a node. Sec-
ond, we identify some new topological properties. Third, we
integrate the main properties into our jellyfish model. Fourth,
we study the time evolution of the Internet with respect to our
model. Finally, we show that our model can be used to distin-
guish among graph generators.

The jellyfish model provides novel insight into the structure
of the Internet topology. Despite its simple nature, the jellyfish
captures most of the known macroscopic properties. The model
facilitates the visualization of the complex Internet structure by
abstracting it into something that a human can easily picture and
understand.

We summarize our main observations and contributions in the
following points.

e We use three metrics to quantify the topological importance
of a node and we examine their meaning and their relation-
ships.

o The Internet has a highly connected core and layers of nodes
in decreasing importance. This way, we can define a notion
of loose hierarchy in the network.

o The jellyfish model provides fairly tight upper bounds of the
distances between nodes.

o Low degree nodes are scattered in the network in contrast to
a strictly layered hierarchy.

o Approximately 30% of the edges are between nodes of the
same class according to our model. From the remaining
edges, 20% of the edges are “redundant” edges between ad-
jacent layers.

e The topological growth is horizontal: The number of layers
has not increased over time.

e The statistical properties of the topology with respect to the
jellyfish have not changed significantly over time.

e The jellyfish can be used to distinguish among graph gener-
ators.

In the future, we want to develop a theoretical framework that
will explain and justify our experimentally derived model. The
ground breaking work of Reittu and Norros [18] opens the doors
for a parallel approach where theory and real-data analysis com-
plement each other. Furthermore, we intend to elaborate and fine
tune the jellyfish model by integrating more topological proper-
ties. We want to identify more topological properties and in-
tegrate them into the model using novel means such as color.
Finally, we want to examine whether other real networks can be
described by the jellyfish model.

APPENDIX

I. CORE: RELAXING THE CLIQUE CONSTRAINT

We explain our choice of defining our core to be a clique
containing the maximal degree node. One could consider near-
cliques, and include in the core nodes of high degree that con-
nect with almost all the core nodes. This would make sense if by
relaxing the clique constraint, we could get a set of nodes that
are substantially more important than the nodes left out of the
clique.

Definition 1: We define an n-relaxed clique to be a set of
nodes that connect to every node in the set except at most n
nodes.

For example, a set of &£ nodes is a 1-relaxed clique if and only
if each node connects to at least d—1 nodes in the original clique
where d is the size of the original clique.

We do the following experiment. We begin with the clique
containing the highest degree node. Let ¢ be the number of nodes
in the clique. This corresponds to a O-relaxed clique. Now for
the next iteration, we relax this requirement and allow nodes
into the core that have one missing edge from the original core
forming a 1-relaxed clique.

We plot the average significance of an n-relaxed clique versus
n for Internet instance Int-06-2000. We vary n from Oto ¢ — 1
where c is the number of nodes in the first clique (n = 0).

First, we observe that the maximum average significance is
obtained when the core is a clique which corresponds to the
case of n = 0. Second, we see that as we increase n the av-
erage significance of the core decreases smoothly. Therefore,
we do not have a reason to pick a value of n other than zero. For
n = 0, we have the maximum average significance and also the
interpretation of the core is straightforward.

IL. FAILED INTERNET MODELS

In this section, we take a look at several models that looked
promising but failed, as they could not model the properties that
we observed (see Table 5).

The cast or broom model. This model is probably the sim-
plest model one could visualize where domains are connected
as parent and children. However, this model fails because we do
not take into account that ASes could be connected horizontally
as peers and it does not capture that one-degree nodes connect
to high degree nodes as we explain below.
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Table 5. The matrix of observed properties and whether they are satisfied by the different models.

| Property | Cast [ Furball | Doughnut | Jellyfish |
Horizontal connectivity | no yes yes yes
High-low degree edges | no no maybe yes
Distance distribution yes yes no yes

Fig. 15. The Internet topology as a furball.

The furball model. This model allows for nodes to be clas-
sified into layers as before. However, it assumes a connectivity
scheme via which the high degree nodes only connect to other
high degree nodes and so on with the one-degree domains con-
necting to the edge of the network. However, this violates our
power-law on the distribution of one-degree nodes which states
that the one-degree nodes are uniformly distributed throughout
the network and thus, the model fails.

The doughnut model. Here, we try to model the Internet as
aring. The figure shows the possible paths between two nodes
in a layer. In this model, there are several paths of short length
between any two nodes. However, there are also several paths
that go all the way around the previous layer. This model fails
as we know that the majority of nodes go through the core to
connect to other nodes. Therefore, we do not find long round
paths as proposed by this model.
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