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Abstract 
 

In the paper, we propose a novel adaptively secure hierarchical identity-based signature 
scheme from lattices. The size of signatures in our scheme is shortest among the existing 
hierarchical identity-based signature schemes from lattices. Our scheme is motivated by 
Gentry et al.'s signature scheme and Agrawal et al.'s hierarchical identity-based encryption 
scheme. 
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1. Introduction 

In 1984, Shamir introduced the concept of identity-based cryptography and proposed an 
identity-based signature scheme [1]. In an identity-based signature scheme, a trusted third 
party, called KGC (key generation center), only issues a signer's secret key, because the 
signer's public key is the signer's identity such as an email address and a phone number related 
to the signer. That is, the public key distribution problem (or the certification management 
problem) is eliminated. When a verifier wants to verify a signature, therefore, the verifier does 
not need to ask the KGC for the signer's public key, because the verifier can easily deduce the 
signer's public key from the signer's identity. Actually, many identity-based signature schemes 
have been studied [2][3][4]. 

The concept of hierarchical identity-based signatures is the hierarchical extension of 
identity-based signatures. Like an identity-based signature scheme, the KGC issues a signer's 
secret key. In addition, the signer can delegate the secret keys of the signer's child identities in 
an identity hierarchy using its own secret key. 

In 2002, Gentry and Silverberg proposed the first hierarchical identity-based signature 
scheme from bilinear pairings, but the security is not formally proved [5]. Since then, Chow et 
al. proposed the first provably secure hierarchical identity-based signature scheme from 
bilinear pairings [6]. However, these schemes are not resistant to quantum analysis [7]. 

So far, lattice-based cryptography is believed to be resistant to quantum analysis. 
Lattice-based cryptography is also asymptotically efficient because it requires only linear 
operations. 

In 2010, Ruckert proposed two binary tree signature1 schemes from lattices, but both of 
them increase the size of the signatures by the level of hierarchy [8]. In 2012 & 2013, Tian et al. 
and Liu et al. proposed hierarchical identity-based signature schemes from lattices, but their 
schemes are insecure against adaptive identity attacks [9][10]. In 2013, Tian et al. proposed 
another hierarchical identity-based signature scheme from lattices [11]. In Tian et al.'s 
hierarchical identity-based signature scheme, however, the size of signatures depends on both 
the security parameter and the dimension of the lattices. We compare our scheme and existing 
hierarchical identity-based signature schemes from lattices in Table 1. The size of signatures 
in our scheme is shortest among the existing hierarchical identity-based signature schemes 
from lattices. 

 
Table 1. Comparison of security and efficiency 

 ROM / STM DoS SI / AI BTS / HIBS 

[8] #1 ROM  1 l m n    AI BTS 

[8] #2 STM  1 l h m n    SI BTS 

[9] STM m n SI HIBS 

[10] STM  2 l m n    SI HIBS 

[11] ROM m n AI HIBS 
Our Scheme ROM m AI HIBS 

 

                                                           
1 Binary tree signature is the special case of hierarchical identity-based signature with identity space  0,1 . 
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ROM means the scheme is probably secure in the random oracle model and STM means the 
scheme is probably secure in the standard model. DoS is the dimension of the signatures, n  is 
the security parameter, m  is the dimension of the lattices, l  is the depth of the identities, and 
h  is the bit length of the hash values for messages. SI means the scheme is secure against 
selective identity attacks and AI means the scheme is secure against adaptive identity attacks. 
BTS means the scheme is a binary tree signature scheme and HIBS means the scheme is a 
hierarchical identity-based signature scheme. 

1.1 Our Contribution 

In this paper, we propose a hierarchical identity-based signature scheme from lattices. Our 
scheme is adaptively secure and the size of signatures in our scheme is shortest among the 
existing hierarchical identity-based signature schemes from lattices. Our scheme is motivated 
by Gentry et al.'s signature scheme and Agrawal et al.'s hierarchical identity-based encryption 
scheme [12][13]. The security of our scheme is based on the SIS problem on lattices in the 
random oracle model. 

1.2 Organization 

The remainder of this paper is organized as follows: Some preliminaries such as the properties 
of the lattices and the definitions for hierarchical identity-based signatures are presented in 
Section 2. Our hierarchical identity-based signature scheme is given in Section 3. We analyze 
our hierarchical identity-based signature scheme in Section 4. Finally, Section 5 draws the 
conclusion. 

2. Preliminaries 

2.1 Notations 

We let Z  and R  denote the integers and the real numbers, respectively. For any positive 
integer 2q  , we let qZ  denote the ring of integers modulo q . For any positive integer k , 

we let  [ ] 1, ,k k  . We use upper-case letters (e.g., A ) to denote matrices and lower-case 

letters (e.g., v ) to denote vectors. We let 0  denote a zero vector. 

We let || ||v  denote the Euclidean norm of v . We let S  denote the Gram-Schmidt 

orthogonalization of S . The statistical distance between two distributions X  and Y  over a 

countable domain D  is 
1

| ( ) ( ) |
2 i

X i Y i


  D
. If v  is chosen uniformly at random from D , 

we denote v D . 
We use standard big- O  notation. For sufficiently large n , if  f n  is smaller than all 

polynomial fractions, then we say that a function :f  R R  is negligible. Pr[an event]  is 
the probability that the event occurs. 

2.2 Lattices 

First, we define m -dimensional full-rank integer lattices. An m -dimensional full-rank integer 
lattice   for m  linearly independent basis vectors  1, , m

mB b b  Z  is defined as 

follows: 
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 : .mB c c   Z                                                       (1) 

 
We define the dual lattice *  of   as follows: 

 

 * : , , .m mx y x y     Z Z                                             (2) 

 
In this paper, we use an m -dimensional q -ary integer lattice which is one of 

m -dimensional full-rank integer lattices. Let 1n   and 2q   be positive integers. An 

m -dimensional q -ary integer lattice  A  for a uniformly random matrix n m
qA Z  is 

defined as follows: 
 

   : 0 .m n
qA x A x     Z Z                                               (3) 

 
We define the coset  u A  of  A  for a syndrome n

quZ  as follows: 

 

   : .m m
u A x A x u     Z Z                                               (4) 

2.2.1 Hard Problems 

We define the SIS (short integer solution) problem which is used to analyze the security of our 
construction. 
  

Definition 2.1. An instance of the ,SISq   problem is a uniformly random matrix n m
qA Z . 

Then, the ,SISq   problem is to find a non-zero vector mzZ  such that 0 n
qA z  Z  and 

|| ||z  . 

 

In case of  logq n n    , the classic average-case ,SISq   problem is reduced to the 

worst-case SIVP (shortest independent vectors problem) [12][14][15]. 

2.2.2 Gaussian Distributions 

We recall Gaussian distributions [12][15]. 
 

Definition 2.2. For any positive integer sR , a Gaussian function s  with center 0  is 
defined as follows: 
 

 2 2exp || || / .s x s                                                       (5) 
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Definition 2.3. Let m  Z  be an m -dimensional full-rank integer lattice. For any positive 
integer sR , the discrete integral of s  over   is defined as follows: 

 

   .s sx
x 


                                                        (6) 

 

Definition 2.4. Let m  Z  be an m -dimensional full-rank integer lattice. For any positive 
integer sR  and all x , the discrete Gaussian distribution over   with center 0  is 
defined as follows: 
 

     , / .s s sx x   D                                                     (7) 

 

Definition 2.5. Let m  Z  be an m -dimensional full-rank integer lattice and *  a dual 
lattice of  . For any positive real number  R , a Gaussian parameter     is the smallest 

s  such that   *
1/ \ 0s   . 

 
Next, we recall the following useful facts. 

 

Fact 2.1 [12][15][16]. Let m mS Z  be a basis for ( )A  and n m
qA Z  a uniformly random 

matrix. For any || || ( )s S n   and any syndrome n
quZ , the probability that || ||>x s m  

is negligible for n , where 
( ),A s

u

x 
 D . 

 

Fact 2.2 [12][15][16]. Let m mS Z  be a basis for ( )A  and n m
qA Z  a uniformly random 

matrix. For any || || ( )s S n  , the probability that x  is a zero vector is negligible for n , 

where 
( ),A s

x 
 D . 

 

Fact 2.3 [13][17]. Let n m
qA Z  be a uniformly random matrix, q  a prime, and 

,m m s
R 

Z
D  

a qZ -invertible matrix. For any ( log )s n , two matrices n m
qA R  Z  and 1 n m

qA R  Z  

are also uniformly random. 

2.2.3 Basic Algorithms 

We review basic algorithms which are used to construct our construction and to analyze the 
security of our construction. 
  

Lemma 2.1 [18]. For positive integers 1n  , 2q  , and = ( log )m O n q , a probabilistic 

polynomial time algorithm BasisGen(1 ,1 , )n m q  outputs a pair ( , )n m m m
qA S  Z Z  of a 

uniformly random matrix and a short basis for ( )A  such that || || ( log )S O n q . 
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Lemma 2.2 [13]. Let n m
qA Z  be a uniformly random matrix, m mS Z  a basis for ( )A , 

and 
,m m s

R 
Z

D  a qZ -invertible matrix. For any 2>|| || log (log )s S m n q m   , a 

probabilistic polynomial time algorithm BasisDel( , , , )A R S s  outputs a basis ' m mS Z  for 

( )B  such that || ' ||=|| ||S S  , where 1= n m
qB A R  Z . 

 
Lemma 2.3 [12]. Let m  be a positive integer. For any Gaussian parameter s , a probabilistic 
polynomial time algorithm SampleDom(1 , )m s  outputs a vector 

,m s
v  D

Z
. 

 

Lemma 2.4 [12]. Let n m
qA Z  be a uniformly random matrix, m mS Z  a basis for ( )A , 

and n
quZ  a syndrome. For any || || ( log )s S n  , a probabilistic polynomial time 

algorithm SampleD( , , , )A S u s  outputs a vector 
( ),A s

u

v 
D . 

 

Lemma 2.5 [13]. Let m  be a positive integer. For any = log ( log )s n q m , a 

probabilistic polynomial time algorithm SampleR(1 , )m s  outputs a qZ -invertible matrix 

,m m s
R 

Z
D . 

 

Lemma 2.6 [13]. Let n m
qA Z  be a uniformly random matrix. For any 

( log ) ( )s O n q m  , a probabilistic polynomial time algorithm SampleRwithBasis( , )A s  

outputs a qZ -invertible matrix 
,m m s

R 
Z

D  and a short basis m m
BS Z  for ( )B  such 

that || || ( log )BS O n q , where 1= n m
qB A R  Z . 

2.3 Definitions for Hierarchical Identity-based Signatures 

We define hierarchical identity-based signatures. A hierarchical identity-based signature 
scheme HIBS = {HIBS.Setup,HIBS.Extract,HIBS.Sign,HIBS.Vrfy}  is defined as follows: 

 HIBS.Setup(1 ,1 )n d : On input of a security parameter n  and the maximum hierarchy 

depth d , this algorithm outputs a set params  of public parameters and a master secret 

key msk . 
 id

|
HIBS.Extract(params, ,id)

l
sk : On input of a set params  of public parameters, a secret 

key id
|l

sk  of a parent identity | 1id = (id , ,id )l l , and a child identity 1id = (id , ,id , ,l   

id )c , this algorithm outputs a secret key idsk  of id . In case of = 0l , id
|

= msk
l

sk . 

 idHIBS.Sign(params,id, ,m)sk : On input of a set params  of public parameters, an 

identity id  with its secret key idsk , and a message m , this algorithm outputs a signature 

 . 
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 HIBS.Vrfy(params,id,m, ) : On input of a set params  of public parameters, an identity 

id , a message m , and a signature  , this algorithm outputs 1 if   is valid and 0  
otherwise. 

 

Correctness. A hierarchical identity-based signature scheme HIBS  is correct if, for any valid 
signature   on any message m  corresponding to any identity id , the 
HIBS.Vrfy(params,id,m, )  algorithm outputs 1 with an overwhelming probability. 

 
Unforgeability. A hierarchical identity-based signature scheme HIBS  is strongly 
unforgeable under chosen message and adaptive identity attacks if, in the following game 

SU
HIBS,Game ( )nF  for a forger F , the advantage SU

HIBS,Adv ( )nF  of F  is negligible. 

 Setup: F  is given params , where (params,msk) HIBS.Setup(1 ,1 )n d . Note that 
params  is a set of public parameters and msk  is a master secret key. 

 Extract queries: F  queries an identity idi , adaptively. Then, F  receives a secret key 

id
i

sk  of idi . 

 Sign queries: F  queries an identity idi  and a message mi , adaptively. Then, F  

receives a signature idHIBS.Sign(params,id , ,m )i i i
i

sk  . 

 Output: F  outputs * * *(id ,m , )  such that 

- for all i , id i  is not a prefix of *id  in the Extract queries and 

- *  is not made for * *(id ,m )  through the Sign queries. 

If the * * *HIBS.Vrfy(params,id ,m , )  algorithm outputs 1 , F  wins the game 
SU
HIBS,Game ( )nF . 

The advantage SU
HIBS,Adv ( )nF  of F  is defined as follows:  

 
SU SU
HIBS, HIBS,Adv ( ) = Pr[  wins the game Game ( )].n nF FF                              (8) 

3. Our Construction 

We propose an adaptively secure hierarchical identity-based signature scheme SHIBS  
without increasing the dimension of the signatures. Our construction SHIBS  uses the 
following parameters: 
 1n   is a security parameter. 
 = ( log )m O n q  is the dimension of the lattices. 

 3 1( ) ( ) ( log ) ( log )d dq O n O m n m      is a positive integer. 

 1d   is the maximum hierarchy depth.2 
 The followings are Gaussian parameters: 

- = ( log ) ( log )s O n q m . 

                                                           
2 In case of 1d  , we call it an identity-based signature scheme IBS instead of HIBS. 
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- 0 = ( log )s O n q . 

- For 1 i d  , 3 1 2> ( log ) (log )i i
is O n q n   such that 3

1> ( log )i is s O n q    
2(log )m . 

- For 1 i d  , 3 2= ( log ) ( log )i i
is O n q m  . 

 
In our construction SHIBS , a message space is {0,1}k . Then, our construction 

SHIBS = {SHIBS.Setup,SHIBS.Extract,SHIBS.Sign,SHIBS.Vrfy}  consists of the following 
algorithms: 
 
 SHIBS.Setup(1 ,1 )n d : On input of a security parameter n  and the maximum hierarchy 

depth d : 

- Run the BasisGen(1 ,1 , )n m q  algorithm to obtain a pair ( , )n m m m
qA S  Z Z  

of a uniformly random matrix and a short basis for ( )A . 

- Choose two hash functions *
1 ,

H :{0,1} m m s
Z

D  and 2H :{0,1}k n
qZ , 

where the hash values of 1H  are qZ -invertible [13][19]. 

- Output a set 1 2params = ( ,H ,H )A  of public parameters and a master secret 

key msk = S . 
 id

|
SHIBS.Extract(params, ,id)

l
sk : On input of a set params  of public parameters, a 

secret key id
|l

sk  of a parent identity | 1id = (id , ,id )l l , and a child identity 

1id = (id , ,id , ,id )l c  : 

- Compute id 1 | 1 |1
|

= H (id ) H (id ) m m
l

l
R  Z  and 1

id id
| |

= n m
q

l l
F A R  Z . In case of 

= 0l , id
|

= msk
l

sk  and id
|

= n m
q

l
F A Z . 

- Compute 1 | 1 | 1= H (id ) H (id ) m m
c lR 

  Z  and 1
id id

|
= n m

q
l

F F R  Z . 

- Run the id id
| |

BasisDel( , , , )c
l l

F R sk s  algorithm to obtain a short basis ' m mS Z  

for id( )F , where id
|l

sk  is a short basis for id
|

( )
l

F . 

- Output a secret key id = 'sk S  of id . 

 idSHIBS.Sign(params,id, ,m)sk : On input of a set params  of public parameters, an 

identity id  at depth | id |= l  with its secret key idsk , and a message m {0,1}k : 

- Compute 2= H (m) n
qh Z . 

- Compute id 1 | 1 |1= H (id ) H (id ) m m
lR  Z  and 1

id id= n m
qF A R  Z . 

- Run the id idSampleD( , , , )lF sk h s  algorithm to obtain a vector 
( ),

id
F s

h l

  
 D , 

where idsk  is a short basis for id( )F . 

- Output a signature  . 
 SHIBS.Vrfy(params,id,m, ) : On input of a set params  of public parameters, an 
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identity id  at depth | id |= l , a message m {0,1}k , and a signature  : 

- Compute id 1 | 1 |1= H (id ) H (id ) m m
lR  Z  and 1

id id= n m
qF A R  Z . 

- Output 1, if id 2= H (m) n
qF  Z  and || || ls m   . Otherwise, output 0 . 

4. Analysis 

4.1 Correctness 

We show that our construction SHIBS  is correct. 
 
Theorem 4.1. Our hierarchical identity-based signature scheme SHIBS  is correct. 
 
Proof of Theorem 4.1. Suppose | id |= i . The idSHIBS.Extract(params, ,id)sk  algorithm can 

generate a short basis idsk  for id( )F . Then, the idSHIBS.Sign(params,id, ,m)sk  algorithm 

can sample 
( ),

id
F s

i

  
 D  such that id 2= = H (m) n

qF h Z  and || || is m    with an 

overwhelming probability using the id idSampleD( , , , )iF sk h s  algorithm. Therefore, our 
hierarchical identity-based signature scheme SHIBS  is correct.                                                W 

4.2 Unforgeability 

We show that our construction SHIBS  is strongly unforgeable under chosen message and 
adaptive identity attacks. 
  
Theorem 4.2. In the random oracle model [20], our hierarchical identity-based signature 
scheme SHIBS  is strongly unforgeable under chosen message and adaptive identity attacks if 

the ,SISq   problem for 3 1= ( log ) ( log )d dO n q m    is hard. 

  
Proof of Theorem 4.2. Suppose the hash functions 1H  and 2H  are random oracles controlled 
by an algorithm A . Then, our construction SHIBS  is strongly unforgeable under chosen 
message and adaptive identity attacks assuming the ,SISq   problem for 

3 1= ( log ) ( log )d dO n q m    is hard. That is, if there exists a forger F  mounting strong 

forgery attacks on SHIBS , then we can construct A  solving the ,SISq   problem for 
3 1= ( log ) ( log )d dO n q m   . A  simulates the strong unforgeability game for F  as 

follows: 
 Setup: A  takes an instance * n m

qA Z  of the ,SISq   problem as an input. A  

proceeds as follows: 
- A  chooses d  positive integers * *

1 H
1

, , [ ]dq q q . Suppose F  sends at most 

H
1

q  identities to A  in the 1H  queries at each depth of the hierarchy. 

- A  runs the SampleR(1 , )m s  algorithm d  times to obtain d  matrices 
* *
1 ,
, , d m m s

R R 
Z

D . 



3270                                                           Noh and Jeong: Scalable Hierarchical Identity-based Signature Scheme from Lattices 

- A  chooses a positive integer [ ]w d . 

- A  computes * * *
1= n m

w qA A R R   Z . Note that n m
qA Z  is uniformly 

random by Fact 2.3. 
- A  sends params = A  to F . 

 1H  queries: After receiving the q -th identity 1id = (id , ,id )i  from F , A  
proceeds as follows: 

- If *= iq q , A  sets *
1H (id) = iR  and sends 1H (id)  to F . 

- Otherwise, A  computes * * 1
1 1= ( ) n m

i i qA A R R  
  Z . In case of = 1i , A  sets 

=iA A . A  runs the SampleRwithBasis( , )iA s  algorithm to obtain a matrix 

,m m s
R  D

Z
 and a short basis m m

BS Z  for ( )B , where 

1= n m
i qB A R  Z . A  sets 1H (id) = R , sends 1H (id)  to F , and adds a tuple 

( ,id, , , )Bi R B S  to the 1H  list. 

 2H  queries: After receiving the i -th message mi  of to A  from F , A  proceeds as 
follows: 

- A  runs the SampleDom(1 , )m s  algorithm to obtain a vector 
,i m s

v  D
Z

, 

computes = n
i i qh A v Z , sends ih  to F , and adds a tuple (m , , )i i iv h  to the 

2H  list. 

 Extract queries: After receiving an identity 1id = (id , ,id )c  at depth | id |= c  from 

F , A  proceeds as follows: 
- We assume that all prefixes of id  already appears on the 1H  list. Otherwise, 

A  sends the others to the 1H  queries. 

- A  finds [ ]j c  which is the shallowest level such that *
1 |H (id )j jR . In case 

of [ ]j c , A  aborts. 

- A  looks up |( ,id , , , )j Bj R B S  in the 1H  list, where 
* 1 * 1 1
1 1= ( ) ( ) n m

j qB A R R R   
   Z  and BS  is a short basis for ( )B . 

- If =j c , A  sets id = Bsk S . Otherwise, A  runs the 

SHIBS.Extract(params, ,id)BS  algorithm to obtain a secret key idsk  of id . 

- A  sends idsk  to F . 

 Sign queries: After receiving an identity 1id = (id , ,id )c  at depth | id |= c  and a 

message mi  from F , A  proceeds as follows: 

- If for all [ ]j c , *
1 |H (id ) =j jR , A  looks up (m , , )i i iv h  in the 2H  list. If mi  

does not appear on the 2H  list, A  sends mi  to the 2H  queries. A  

computes * *
1=i c iR R v   and sends i . 

- Otherwise, A  sends id  to the Extract queries to obtain idsk , runs the 

idSHIBS.Sign(params,id, ,m )isk  algorithm to obtain i , and sends i . 

 Output: Assume that F  outputs * * *(id ,m , ) . 
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- In case of *| id |w  , A  aborts. Note that the probability of *| id |w   is 
1

1
d

 , 

since w  is randomly selected from [ ]d . 

- A  finds [ ]j w  which is the shallowest level such that * *
1 |H (id )i iR . In case 

of [ ]j w , A  aborts. Note that the probability of [ ]j w  is H
1

1 (1 / )wq . 

- A  outputs * * *
1= m

w iz R R v    Z  as a solution to the ,SISq   problem. 

 
We can assume that * *

2(m = m , , = H (m ))i i iv h  is in the 2H  list. Then, z  is a solution to the 

,SISq   problem, because  

 
* * * * *

1

* * * * *
1

* * * *
* 1id

*
*id

*
2

= ( )

=

=

=

= H (m ) = 0 ,

w i

w i

w i

i

n
i q

A z A R R v

A A R R v

F A R R v

F A v

h









   

   

   

  

 





Z

                                            (9) 

 
where 
 

* 1 * 1
* 1id

* * * * 1 * 1
1 1

*

= ( ) ( )

= ( ) ( )

=

w

w w

n m
q

F A R R

A R R R R

A

 

 





 





 
Z

                                      (10) 

 
and 
 

3 2

3 1

3 1

|| || ( log ) ( log )

= ( log ) ( log )

( log ) ( log )

= .

w w

w w

d d

z O n q m m

O n q m

O n q m














  



 
                                  (11) 

 
To reduce the SIS  problem to the SIVP , we set q  as follows: 

 

3 1

3 1

( log )

= ( log ) ( log ) ( log )

= ( ) ( ) ( log ) ( log ) .

d d

d d

q n n

O n q m n n

O n O m n m

 

 

 





  

  

  

                            (12) 

 
The advantage SU

SHIBS,Adv ( )nF  of F  is computed as follows: 
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SIS SU
SHIBS,

H
1

SU
SHIBS,

H
1

1
Adv Adv

1
Adv .

w

d

d q

d q

 


 


A F

F

                                               (13) 

W 

5. Conclusion 

In this paper, we have proposed a hierarchical identity-based signature scheme from lattices. 
Our scheme is adaptively secure and the size of signatures in our scheme is shortest among the 
existing hierarchical identity-based signature schemes from lattices. We proved the security of 
our scheme based on the SIS problem on lattices in the random oracle model. The question of 
constructing an adaptively secure hierarchical identity-based signature scheme from lattices 
without increasing the dimension of the signatures in the standard model still remains open. 
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