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Abstract 
 

A novel, chaotic map that is based on concatenated torus automorphisms is proposed in this 

paper. As we know, cat map, which is based on torus automorphism, is highly chaotic and is 

often used to encrypt information. But cat map is periodic, which decreases the security of the 

cryptosystem. In this paper, we propose a novel chaotic map that concatenates several torus 

automorphisms. The concatenated mechanism provides stronger chaos and larger key space 

for the cryptosystem. It is proven that the period of the concatenated torus automorphisms is 

the total sum of each one’s period. By this means, the period of the novel automorphism is 

increased extremely. Based on the novel, concatenated torus automorphisms, two application 

schemes in image encryption are proposed, i.e., 2D and 3D concatenated chaotic maps. In 

these schemes, both the scrambling matrices and the iteration numbers act as secret keys. 

Security analysis shows that the proposed, concatenated, chaotic maps have strong chaos and 

they are very sensitive to the secret keys. By means of concatenating several torus 

automorphisms, the key space of the proposed cryptosystem can be expanded to 2
135

. The 

diffusion function in the proposed scheme changes the gray values of the transferred pixels, 

which makes the periodicity of the concatenated torus automorphisms disappeared. Therefore, 

the proposed cryptosystem has high security and they can resist the brute-force attacks and the 

differential attacks efficiently. The diffusing speed of the proposed scheme is higher, and the 

computational complexity is lower, compared with the existing methods. 
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1. Introduction 

A chaotic map is a kind of dynamical system, the output of which is ergodic and sensitive to 

initial conditions [1]. The properties of a chaotic map make it useful for information 

encryption. Early in 1952, Shannon proposed mixing transformations based on the 

stretch-and-fold mechanism [2]. This method actually generates a chaotic system and achieves 

random permutations. The confusion and diffusion based on the chaotic map have strong 

chaos, which allows the achievement of high security for the cryptosystems [3, 4, 5]. The 

chaotic map also is used extensively in image encryption and steganography. The ergodicity of 

the chaotic map ensures that every input and every output correspond one-to-one, and the 

sensitivity to initial conditions provides high security for the cryptosystem. By scrambling and 

diffusing all the pixels in the plain image, the chaotic map generates a cipher image with 

strong chaos. 

There are two kinds of methods in how to build the mapping function by a chaotic system in 

image encryption. The first kind transforms the coordinates of the pixels directly. That is to 

say, the coordinates of a pixel in the plain image are the input of the chaotic map, the mapping 

system outputs new coordinates, which indicate the location of the pixel in the cipher image. 

Since the coordinates of the pixel of gray image compose a two-dimensional vector, these 

encryption methods need two-dimensional chaotic maps. Fridrich proposed an 

image-encrypting scheme using the Baker map [6]. In this scheme, all the coordinates of the 

pixels in the plain image are transformed to different ones by the Baker map, generating a 

highly-chaotic cipher image. However, in order to enhance the security of the cryptosystem, 

Fridrich proposed that any two-dimensional chaotic map can be extended to three dimensions 

by modifying the pixels’ gray values as well as permuting their locations. These scrambling 

methods are simple and fast, but the key space is usually low. Besides, chaotic systems have 

period, which decrease the security of the cryptosystem. In order to enhance the security, Zhu 

proposed to permute the pixels in bit-level [7]. In this method, each bit of the pixel is permuted 

by a two-dimensional chaotic map independently. This method improves the security of the 

cryptosystem, but the computational complexity is high. 

Another kind of methods uses the chaotic map for encryption indirectly. In these methods, 

the input of the chaotic map is not the coordinates of the pixels, but initial values of the chaotic 

system. Using these initial values, the chaotic system outputs a series of numbers. The order of 

these numbers indicates the order of the pixels’ locations in the cipher image. Since the chaotic 

system is highly sensitive to the initial states, a large key space is achieved. The standard map 

[8, 9], the logistic map [10, 11, 12], and the sine map [13, 14] can be used and achieve high 

security. But in these methods, the operations of the chaotic map are based on decimal 

numbers with high precision, and the iterations of the mapping algorithm are excessive. 

Therefore, the computational complexity is high. 

In this paper, a chaotic map which has high security and low computational complexity is 

proposed. In the proposed scheme, the cat map is used. The map ( ) ( 1)n nX AX  , in which 
 

1 1

1 2
A

 
  
 

,                                                                   (1) 

 

is defined as cat map [15]. The cat map is a kind of two-dimensional automorphism group. It 

has an ergodic hierarchy and strong chaos [16]. The cat map has been used extensively to 
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encrypt images [6, 17]. Pang proposed an image-encrypting scheme based on the cat map in 

the discrete wavelet transformation domain [18]. Chen extended the 2D cat map to a 3D cat 

map [19]. In this scheme, the image is piled up to three dimensions and is scrambled by the 3D 

cat map. This scheme achieved higher security and performs the computations faster. Chang 

proposed a copyright protection scheme for image based on the cat map. This method embeds 

the watermark image into the cover image by the cat map with tiny modifications to the cover 

image, thereby achieving a high-quality stego image [20]. 

Like many other chaotic maps, the cat map has periodicity, i.e., although several iterations 

from the original image generate a strongly-chaotic cipher image, a certain number of 

iterations can recover the original image completely. This number of iterations is the period of 

the cat map. Periodicity can be used in recovering the original image, but it also leads to the 

insecurity of the cryptosystem. Attackers can process iterations from the cipher image, and the 

original image will be recovered in certain iterations. Chen analyzed the periodic performance 

of the generalized cat map and proposed some approaches to deal with its periodicity when 

encrypting an image, but the period of the cat map was still relatively short [21]. 

In this paper, we propose a concatenated torus automorphisms mechanism that increases the 

period of the chaotic map significantly, resulting in higher security of the cryptosystem. The 

format of the rest of the paper is as follows. Section 2 gives the notations that are used in the 

paper and some preliminary information. In Section 3, we analyze the security of the 

cryptosystem based on the conventional torus automorphism, and Section 4 presents the 

proposed, novel, concatenated torus automorphisms mechanism and schemes for its 

application in image encryption. The security of the cryptosystem is analyzed and simulated in 

Section 5. Our conclusions, based on the performance of the proposed scheme in comparison 

to other schemes, are presented in Section 6. 

2. Notations and Preliminaries 

Before the novel concatenated torus automorphisms mechanism is proposed, a brief 

introduction and analysis of torus automorphism is presented in this section. The notations that 

are used are provided in Table 1. 
 

Table 1. Notations 

Notation Definition 
Nf

 
Torus automorphism with module N 

R   Recurrence time of the torus automorphism 

A   Scrambling matrix of the torus automorphism 
(p)I   Plain image 
(c)I   Cipher image 
(d)I   Decrypted image 

ek   Number of iterations in the encrypting process 

dk   Number of iterations in the decrypting process 
(0) (0)( , )pp x y   Gray value of the pixel with coordinates (0) (0)( , )x y  in the plain image  

( ) ( )
( , )e ek k

cp x y  Gray value of the pixel with coordinates 
( ) ( )

( , )e ek k
x y

 
in the cipher image  

( ) ( )
( , )d dk k

dp x y   Gray value of the pixel with coordinates 
( ) ( )

( , )d dk k
x y

 
in the decrypted image  
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The two-dimensional automorphism 1f  of group 
1G , denoted as 

1 2

1 1 1: ,  [0,1) [0,1)f G G G R    , is defined as a torus automorphism if the following is 

satisfied:  
 

1 1 11 121

2 2 21 22

'
:  mod1,  where 

'

s s a a
f A A

s s a a

     
       

     
，                                 (2) 

 

and    1 2 1 2 1 ' 's s s s G， . The notation mod1x  is the fractional part of the number x. In 

addition, ija Z  ( , 1,2i j  ), det( ) 1A  , and the eigenvalues 1  and 2  of matrix A should 

satisfy 1,2 { 1,0,1}   . In this paper, matrix A  is defined as a scrambling matrix. The 

parameter 
11 22r a a   is defined as the trace of matrix A. Percival and Vivaldi proved that the 

torus automorphism 1f  has strong chaos when 2 4r   [22]. 

Assuming that the initial state of the torus automorphism is (0) (0) (0)

1 2[ ]s s s , a series of 

iterations from (0)s  form a dynamical system, as shown in the following: 
 

( ) (0)
11 121 ( ) ( 1) (0) 1 1

( ) (0)
21 222 2

: =   mod1,

nn

n n n

n

a as s
f s As A s

a as s

     
       

    
                      (3) 

 

where n  is a positive integer. State ( )ns  is the n
th
 state from the initial state (0)s , and 

( ) ( ) ( )

1 2

n n ns s s    . When n  varies from 1 to infinity, the dynamical system forms a set of 

orbits (0) (1){ , , }s s .  

Since 1 2, [0,1)s s  , we can denote s as the following form: 
 

1 2
1 2 1

1 2

[ ] ,
p p x y

s s s G
q q N N

   
      

  
                                           (4) 

 

where ip  and iq  ( 1,2i  ) are co-prime integers, and N is the least common multiple of 1q  

and 2q . Therefore, (3) can be transformed into another form, i.e., :N

N Nf G G , where 

{0,1, , 1} {0,1, , 1}NG N N    . The torus automorphism Nf  is shown as the following: 
 

( ) (0)
11 12( ) ( 1) (0)

( ) (0)
21 22

:   = =   mod ,

nn

N n n n

n

a ax x
f X A X A X N

a ay y

     
        

    
            (5) 

 

where (0) (0) (0)X x y     is the initial state, ( ) ( ) ( )n n nX x y     is the n
th
 state, and 

(0) ( ),  n

NX X G .  

The one-module torus automorphism 1f , shown as (3), could be periodic. That is to say, for 

the set (0) (1){ , , }s s , an integer R  may exist such that (0) ( )Rs s . The necessary and sufficient 

condition for the torus automorphism 1f  to be periodic is that the initial state (0)s  be 

composed of a pair of rational numbers. If the period of torus automorphism 1f  is R, then the 
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period of Nf  is also R, under the condition that the scrambling matrices A in (3) and (5) are 

equal. Also, the period R is defined as the recurrence time of the torus automorphism. The 

recurrence time of the torus automorphism is usually found by simulations. 

Meanwhile, since the scrambling matrix A in (5) is restricted by the conditions det( ) 1A   

and its trace, the two-dimensional torus automorphism, Nf , is actually a two-parameter map. 

Therefore, (5) can be generalized as the following form [19]: 
 

( ) (0)

( ) ( 1) (0)

( ) (0)

1
:   = =   mod .

1

nn

N n n n

n

ax x
f X A X A X N

b aby y

     
            

          (6) 

3. Security Analysis of the Cryptosystem Based on the Torus 
Automorphism 

Since the torus automorphism Nf  is periodic with a period of R , R  iterations from the initial 

state (0)X  will return back to itself, i.e., ( ) (0) (0)R RX A X X  . The period R of the torus 

automorphism Nf  
depends on the values of the scrambling matrix A and the module N. Now, 

we give the following theorem related to the period of the torus automorphism and its proof. 

THEOREM 1: Two N -module torus automorphisms, Nf  and Nf , are completely the same 

if the values of a  and b  in their scrambling matrices are correspondingly equal (mod N ). 

PROOF 

Assume that there are two scrambling matrices, of which elements are correspondingly 

equal (mod N ), as shown in the following: 
 

  

11
 and ,

11

a kNa
A A

b kN a kN b kNb ab
 

  
           

 

 

where , ,a b k Z , and N  is the module of the torus automorphisms. Then, the two torus 

automorphisms, Nf  and Nf , with scrambling matrices of A  and A , respectively, can be 

denoted as: 
 

( ) ( 1) ( 1) ( 1) ( 1)

1( ) ( 1) ( 1) ( 1) ( 1) ( 1)

1
        :    mod ,

1

n n n n n

N

n n n n n n

ax x x x ay
f A N

b aby y y bx aby y


   

    

        
                    

 

  

( ) ( 1) ( 1)

2( ) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1) 2 2 ( 1) ( 1

1
and  :  

1

                         

n n n

N

n n n

n n n

n n n n n n n

a kNx x x
f A

b kN a kN b kNy y y

x ay kNy

bx kNx aby akNy bkNy k N y y



 

 

  

      

      
                

 


      )

( 1) ( 1)

( 1) ( 1) ( 1)
                          =   mod  .

n n

n n n

x ay
N

bx aby y

 

  

 
 
 

 
 

  

  

 

It can be seen that Nf  is exactly the same as Nf . Therefore, Theorem 1 is proven. 
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For example, consider that the modules of the two torus automorphisms, 16f  and 16f , are 

both 16, and their scrambling matrices are: 
 

1 5 1 21
 and ,

7 36 23 484
A A 

   
    
   

                                                (7) 

 

respectively. Note that the elements, a  and b , in A  and A  are correspondingly equal (mod 

16). Assuming that  (0) 7 11X   is an initial state chosen arbitrarily, the states of the two 

torus automorphisms with the same initial state (0)X  are shown in Table 2. We can see that 

the outputs of the two torus automorphisms are exactly the same, and the recurrence time is 12 

for both of them. 
 

Table 2. Examples of Two Torus Automorphisms 

 (0)X   (1)X  (2)X  (3)X  (4)X  (5)X  (6)X  (7)X  (8)X  (9)X  (10)X  (11)X  (12)X  

16f   
7 

11 

14 

13 

15 

6 

13 

1 

2 

15 

13 

10 

15 

3 

14 

5 

7 

6 

5 

9 

2 

7 

5 

10 

7 

11 

16f   
7 

11 

14 

13 

15 

6 

13 

1 

2 

15 

13 

10 

15 

3 

14 

5 

7 

6 

5 

9 

2 

7 

5 

10 

7 

11 

Torus automorphisms can be used to encrypt images. Assuming that the size of the original 

grayscale image, (p)I , is N N , the encrypting process scrambles (p)I  by torus 

automorphism and obtains a highly-chaotic cipher image (c)I . Any pixel with coordinates 
(0) (0)( , )x y  in (p)I  is transferred to the new location ( ) ( )

( , )e ek k
x y  in (c)I  by the following map: 

 

( ) (0)

( ) ( )(0) (0)

( ) (0)
:   mod     , , , ,

e

e e e

e

k

k k kN

Nk

xx
f A N x y x y G

yy

   
     

  
               (8) 

 

where N  is the size of the image, and 
ek  is the iteration number of the encrypting process. 

Assuming that the recurrence time of the torus automorphism is R , the decrypting process 

recovers the original image by processing eR k  iterations from the cipher image (c)I . 

Therefore, the decrypting algorithm is: 
 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
  mod     , , , ,

d e

d e e d d

d e

k k

k k k k k

Nk k

x x
A N x y x y G

y y

   
     

   
                        (9) 

 

where d ek R k  , and ( ) ( ) (0) (0)d dk kx y x y       ; therefore, the original image is 

recovered successfully. To achieve a successful decryption, the following two requirements 

must be satisfied: 1) the scrambling matrix, A , must be consistent in the encrypting and 

decrypting processes, and 2) the sum of the iterations in the encrypting process and in the 

decrypting process must be equal to R , i.e., e dk k R  .  

Therefore, both the scrambling matrix and the iteration number can act as secret keys in the 

cryptosystem. For the scrambling matrix, there are two independent parameters, i.e., a  and b , 

as shown in (6). Since the same scrambling matrices (mod N ) result in identical torus 

automorphism, the ranges of a  and b  are both N . For the iteration number dk  in the 
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decrypting process, since 
d ek R k  , the range of 

dk  is 1 1dk R   . If both A  and 
dk  are 

secret keys of the image encrypting scheme, the total size S  of the key space is: 
 

 2 1S N R  .                                                    (10) 

 

In the experiment below, the size of the original image is 128 128 . The scrambling matrix 

is A , as shown in (7). The recurrence time, R , is 96 when 128N  . The experimental 

results are shown as Fig. 1. In this figure, (a) is the original image, and (b), (c), (d) are 

scrambled images that are iterated 1, 50, and 96 times from the original image, respectively. 

We can see that images (b) and (c) are chaotic images, while (d) is exactly the same as (a). This 

means that R  iterations from the original image will recover the original image, while the 

intermediate images are chaotic.  

Assuming that the cipher image is (c), i.e., the number of iterations in the encryption is 

50ek  , we use the following two matrices: 
 

1 133 1 6
 and ,

135 17956 7 43
A A 

   
    
   

 

 

to decrypt image (c). The decrypted images are (e) and (f) in Fig. 1. We see that (e) is the same 

as (a), since the elements in A  are correspondingly equal to those in A  (mod 128), while (f) 

is chaotic because a different scrambling matrix, A , is used for decryption. 

 
Fig. 1. Experimental Results of Encryption and Decryption Using Torus Automorphism 

4. Image Encryption Based on the Concatenated Torus Automorphisms 

One of the advantages of image encryption using the torus automorphism is that the successful 

decryption can be achieved by processing the right number of iterations from the cipher image 

with the right scrambling matrix. But two weaknesses lead to the insecurity of the 

cryptosystem. The first weakness is that the scrambling matrices are equal periodically, i.e., 

the period is the module N , and the second weakness is that the recurrence time of the 

conventional torus automorphism is usually short. In this section, we propose a chaotic map 

based on the concatenated torus automorphisms. The novel scheme provides higher security 

for the cryptosystem. 

4.1 Concatenated Torus Automorphisms Mechanism 

In the following, a theorem related to the concatenated torus automorphisms is proposed. 

THEOREM 2: Assuming that there are L  torus automorphisms, 1

Nf , 2

Nf , …, N

Lf , the 

scrambling matrix iA  of N

if  ( 1,2, ,i L ) is 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 6, Jun. 2013                                 1499 

Copyright ⓒ 2013 KSII 

1

1

i

i

i i i

a
A

b a b

 
   

,                                                          (11) 

 

where ,i ia b Z , 
1 2 LA A A   , and the recurrence time of N

if  is 
iR . For any initial state 

(0) (0)

Nx y G   , if it is iterated 
1k  times by 

1A , 
2k  times by 

2A , …,
 Lk  times by 

LA , and 

the result ( ) ( )e ek kx y    is obtained, then the initial state, (0) (0)x y   , can be recovered if 

( ) ( )e ek kx y    is iterated 
L LR k  times by 

LA , 
1 1L LR k   times by 

1LA 
, …, and 

1 1R k  

times by 
1A . 

PROOF 
 

1 1

( ) (0)

1 1( ) (0)
  mod .

e

L L

e

k

k k k

L Lk

xx
A A A N

yy




   
       

  
   

1 1 2 2 1 1 2 2 1 1

1 2

( ) (0)

1 2 1 2 1 1( ) (0)

(0) (0)

1 2 (0) (0)

=

= =   mod .

e

L L L L L L

e

L

k

R k R k R k R k R k R k k k k

L L L Lk

R R R

L

xx
A A A A A A A A A

yy

x x
A A A N

y y

     



   
              

  

   
       

   

  

 

From Theorem 2, we know that several different scrambling matrices consist of a new 

dynamical system that is still periodic. The period cR  of the concatenated torus 

automorphisms is: 
 

1 2c LR R R R    .                                                       (12) 
 

It is clear that the period of the concatenated torus automorphisms has been increased 

significantly. In order to ensure that all of the intermediate images are highly chaotic, the 

following condition must be satisfied: 
 

     1 1 2 21 1 1 L Lk R k R k R      .                      (13) 

 

4.2 Image Encryption Based on the Two-Dimensional Concatenated Torus Automorphisms 

In this section, we use the proposed concatenated torus automorphisms to encrypt images. 

Assuming that the size of the plain image, (p)I , is N N , in encrypting process, all the pixels 

in the plain image are scrambled by the proposed concatenated torus automorphisms, i.e., the 

values of the pixels’ coordinates are iterated 1k  times by 1A , 2k  times by 2A , …, and
 Lk  

times by LA , generating the cipher image that has strong chaos. When decryption is performed, 

the cipher image is scrambled  L LR k  times by LA , 1 1L LR k   times by 1LA  , …, and 

1 1R k  times by 1A , after which the original image is recovered completely. The framework 

of the encrypting and decrypting processes of the proposed scheme is shown as Fig. 2. 
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Fig. 2. Framework of the Cryptosystem Based on the 2D Concatenated Torus Automorphisms 

Therefore, any pixel with the coordinates (0) (0)( , )x y  in the plain image will be transferred 

to ( ) ( )
( , )e ek k
x y  in the cipher image by the following encrypting algorithm: 

 

1 1

( ) (0)

( ) ( )(0) (0)

1 1( ) (0)
  mod ,     , , ,

e

e e e e eL L

e

k
k k k k k

L L Nk

xx
A A A N x y x y G

yy




   
    

  
.           (14) 

 

The total number of the iterations in the encrypting process is 
1 2 Le e e ek k k k   .  

The decrypting algorithm is: 
 

1 2

( ) ( )

( ) ( ) ( ) ( )

1 2( ) ( )
  mod ,     , , ,

d e

d d d e e d dL

d e

k k
k k k k k k k

L Nk k

x x
A A A N x y x y G

y y

   
    

   
,          (15) 

 

where 
1 11d ek R k  , 

2 22d ek R k  , …, 
L Ld L ek R k  . The total number of iterations in the 

decrypting process is 
1 2 Ld d d dk k k k    . It is clear that 1 2e d L ck k R R R R      . 

From Theorem 2, we know that ( ) ( ) (0) (0)( , ) ( , )d dk k
x y x y . 

An example is shown below. The concatenated torus automorphisms are composed of three 

torus automorphisms, which are 1

Nf , 2

Nf , and 3

Nf . Their scrambling matrices are shown as 

the following: 
 

1 2 3

1 9 1 7 1 4
,  ,  .

12 109 5 36 6 25
A A A

     
       
     

                         (16) 

 

When the module is 128 (the image size), the recurrence times of the three torus 

automorphisms are 1 128R  , 2 96R  , and 3 64R  , respectively. In the encrypting process, 

the original image is scrambled 
1

40ek   times by 1

Nf , 
2

8ek   times by 2

Nf , and 
3

13ek   

times by 3

Nf . Fig. 3 shows the experimental results. In this figure, (a) is the original image, (b) 

and (c) are the scrambled images with one and 40 iterations by 1A  from (a), respectively, (d) is 

the scrambled images with eight iterations by 2A  from (c), and (e) is the scrambled images 

with 13 iterations by 3A  from (d). Image (e) is the cipher image, which has been iterated 61 

times from the original image by the three scrambling matrices, and it is highly chaotic. In the 

decrypting process, (e) is iterated 
3 33 51d ek R k    times by 3A , thereby obtaining image (f); 
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(f) is iterated 
2 22 88d ek R k    times by 

2A , thereby obtaining (g); and (g) is iterated 

1 11 88d ek R k    times by 
1A , thereby obtaining (h). Image (h) is the decrypted image, and it 

is evident that it is exactly the same as (a). From (a) to (h), there was a total of 288 iterations, 

which is exactly the sum of 
1R , 

2R , and 
3R . Only image (h) is exactly the same as (a), while 

all the intermediate images are strongly chaotic.  

 
Fig. 3. Experimental Results of the Image Encryption Using the 2D Concatenated Torus 

Automorphisms 

4.3 Image Encryption Based on the Three-Dimensional Concatenated Torus Automorphisms 

The cryptosystem proposed above scrambles all the pixels in the plain image but doesn’t 

change their gray values, which leads to the same histogram distribution as that of the plain 

image, i.e., the cipher image using a 2D chaotic map has a non-uniform histogram. In this 

section, an improved scheme that uses the 3D concatenated torus automorphisms is proposed. 

In this scheme, both the positions and the gray values of the pixels in the plain image are 

modified by the concatenated torus automorphisms. The framework of the 3D concatenated 

chaotic map is shown as Fig. 4. 

 
Fig. 4. Framework of the Cryptosystem Based on the 3D Concatenated Torus Automorphisms 

When encrypting, the pixel with coordinate (0) (0)( , )x y  in the plain image is permuted to 
( ) ( )

( , )e ek k
x y  in the cipher image by (14). Meanwhile, the gray value of the pixel is modified by 

the diffusion function F . In order to provide high security and to achieve successful 

decryption, the diffusion function F  must satisfy the following requirements: 

 The modifications to pixels’ gray values by function F  must provide a uniform 
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histogram distribution to the cipher image.  

 Function F  must have the characteristic of diffusion. 

 The inverse operation of the diffusion function F  must recover the gray values of the 

plain image. 

Therefore, the output of the diffusion function F  in our proposed scheme depends on the 

pixel’s gray value in the plain image, the gray value of the previous pixel in the cipher image, 

and the coordinates of the pixel in the plain image and cipher image, shown as the following: 
 

   ( ) ( )(0) (0): ( ) ( ) ( 1)   mod256e ek k

c cipher p plain c cipherF p l p l p l x x y y        ,     (17) 

 

where ( ) ( )
( 1)e ek k

cipherl N x y   , and (0) (0)( 1)plainl N x y   . In (17), ( )c cipherp l  is the gray 

value of the th

cipherl  pixel in the cipher image, ( )p plainp l  is the gray value of the th

plainl  pixel in 

the plain image. The parameter   is an integer, which expands the effect of the previous pixel 

to the current pixel in the cipher image. In order to compute the value of the first pixel in the 

cipher image, of which 1cipherl  , the value of (0)cp  should be pre-determined. Then, the 

modification to the pixel’s gray value, implemented by (17), can be diffused to the whole 

image when cipherl  varies from 1 to 2N . The diffusion process can be implemented several 

rounds. To start the second round, we take the diffused image as plain image. The initial value 

(0)cp  of the second round is the gray value of the last pixel of the diffused image of the 

previous round. Then, we can implement the second round by (17). This process can be 

implemented several rounds. 

In decryption process, the pixels’ locations are recovered by (15), and their gray values are 

recovered by the inverse operation of function F , which can be shown as the following: 
 

   ( ) ( ) ( ) ( )1 : ( ) ( ) ( 1)   mod256e d e dk k k k

d decrypted c cipher c cipherF p l p l p l x x y y         ,   (18) 

 

where 
( ) ( )

 ( 1)e ek k

cipherl N x y   , and 
( ) ( )

( 1)d dk k

decryptedl N x y   . 

Fig. 5 shows the experimental results. The concatenated torus automorphisms are the same 

as those in the example in Section 4.2, and the diffusion algorithm is shown as (17), where 

=7 . We can see that only one iteration of the concatenated chaotic map generates a 

highly-chaotic image, shown as image (b). The cipher image, which is iterated 61 times and is 

shown as (c), is highly chaotic. The decrypted image, which is obtained by (15) and (18), is the 

same as the plain image. Fig. 6 shows the histograms of the images in Fig. 5, respectively. We 

can see that the cipher images have uniform histogram distributions. 

 
Fig. 5. Experimental Results of Image Encryption Using the 3D Concatenated Torus Automorphisms 
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Fig. 6. Histograms of the Cipher Images Encrypted by the 3D Concatenated Torus Automrophisms 

5. Analysis of the Statistical Performance and Computational 
Complexity 

5.1 Statistical Performances 

In this section, the security of the proposed schemes is analyzed statistically. The 

cryptosystems based on the proposed 2D and 3D concatenated torus automorphisms are both 

studied, and the examples presented in Sections 4.2 and 4.3 are used for simulation. For 

comparison, the following four schemes were analyzed: 

a. 2D cat map [15]. This method inputs the coordinates of the pixels in the plain image to 

the mapping function and computes the coordinates of the pixels in the cipher image 

directly. 

b. 3D cat map [17]. This method transforms the coordiantes of the pixels by the mapping 

function directly and modifies the pixels’ gray values by performing an exclusive OR 

operation with random numbers. 

c. 3D logistic map [12]. This method permutes the pixels in the plain image according to 

the order of a series of random numbers generated by the logistic map. Meanwhile, a 

diffusion operation is implemented to the pixels’ gray values. 

d. 3D bit-level permutation [7]. This method takes the same bits of all the pixels in the plain 

image as a group and permutes them by a cat map. Different bit groups are permuted by 

different cat maps. Meanwhile, the pixels’ gray values of the permutated image are 

diffused by a logistic map. 

5.1.1  Mean Square Error  

The cipher image should look totally different from the plain image, and this difference can be 

measured by the mean square error ( MSE ) between the two images. 

 

2

2
1 1

1
( , ) ( , )

N N

p c

i j

MSE p i j p i j
N  

     ,                             (19) 

 

where N  is the size of the image, ( , )pp i j  and ( , )cp i j  are the gray values of the pixels with 

coordinates ( , )i j  in the plain image and the cipher image, respectively. It is clear that 

0MSE   when the plain image and the cipher image are the same. The greater the difference 

between them is, the larger the MSE  value is. 
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The MSE  values between the plain images and their cipher images are shown in Table 3. 

We can see that the proposed 2D concatenated torus automorphisms provide the same effect as 

the 2D cat map [15], and the proposed 3D concatenated torus automorphisms have almost the 

same effect as the schemes in [17], [12], and [7]. 

Therefore, from these data, we can see that the cipher images encrypted by our novel 

concatenated chaotic maps are totally different from the plain images, and the encrypting 

effects are as good as the existing methods.  
 

Table 3. Mean Square Error of the Cipher Images 

Image 
 2D Cat 

Map [15] 

3D Cat 

Map [17] 

3D Logistic 

Map [12] 

3D Bit-Level 

Permutation [7] 

Proposed 

(2D) 

Proposed 

(3D) 

Tiffany 3.38e+03 6.93e+3 7.38e+03 7.08e+03 3.37e+03 7.11e+03 

Baboon 2.59e+03 6.70e+3 6.79e+03 6.72e+03 2.57e+03 6.77e+03 

Parrot 4.21e+03 7.58e+3 7.60e+03 7.51e+03 4.20e+03 7.60e+03 

Goldhill 4.71e+03 7.24e+3 8.15e+03 8.03e+03 4.71e+03 8.11e+03 

Barbara 3.99e+03 7.23e+3 7.70e+03 7.81e+03 3.97e+03 7.79e+03 

Peppers 6.45e+03 8.76e+3 9.14e+03 9.39e+03 6.41e+03 9.25e+03 

Cameraman 7.34e+03 9.38e+3 9.24e+03 9.34e+03 7.34e+03 9.26e+03 

Lena 5.32e+03 7.36e+3 8.93e+03 9.09e+03 5.37e+03 9.08e+03 

Firefighter 6.38e+03 8.54e+3 8.90e+03 8.88e+03 6.33e+03 8.94 +03 

5.2.2 Histogram Distribution  

The histograms of the plain images are usually nonuniform. In order to provide high security, 

the histograms of the cipher images should be uniform, which can be achieved by 3D chaotic 

maps. We use the standard deviation 
hisSD  of the histogram distribution to measure its 

uniformity: 

 

1

his

1

1

1
( )  ,

( )  ,

Z

i

i

Z

i

i

E x x
Z

SD x E x
Z 





 



                                   (20) 

where Z  is the range of the gray value, and ix  ( 1,2, ,i Z ) is the amplitude of the 

histogram. Table 4 shows the standard deviation of the histogram distribution of the plain 

images and the cipher images, respectively. We can see that the 2D cat map [15] and the 

proposed 2D concatenated chaotic map provide exactly the same histogram distributions to the 

cipher images as those of the plain images. This is because that they don’t modify the pixels’ 

gray values. The schemes proposed in [12], [7], and our 3D concatenated chaotic map have 

uniform histogram distributions, and the uniformity is better than that of the scheme in [17]. 
Table 4. Standard Deviation of the Histogram Distribution 

Image Plain Image 
2D Cat Map 

[15] 

3D Cat Map 

[17] 

3D Logistic 

Map [12] 

3D Bit-Level 

Permutation [7] 

Proposed  

(2D) 

Proposed  

(3D) 

Tiffany 66.24 66.24 18.84 8.10 8.01 66.24 8.11 

Baboon 65.00 65.00 8.42 8.61 7.80 65.00 7.88 

Parrot 70.29 70.29 14.02 7.82 7.91 70.29 7.88 

Goldhill 53.88 53.88 26.70 7.84 8.05 53.88 7.45 

Barbara 52.49 52.49 16.12 8.06 8.22 52.49 7.94 

Peppers 46.58 46.58 12.55 8.14 8.50 46.58 7.81 

Cameraman 75.56 75.56 12.08 7.91 7.35 75.56 7.95 
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Lena 43.50 43.50 28.32 8.05 8.02 43.50 8.15 

Firefighter 67.77 67.77 13.37 8.64 8,11 67.77 8.24 

5.2.3  Correlation of the Adjacent Pixels 

The adjacent pixels in a plain image are usually highly correlated, while the adjacent pixels in 

a scrambled image have a low correlation. Fig. 7 shows the distributions of the adjacent pixels 

in the plain image and the cipher image, respectively, in which the cipher image is encrypted 

by the proposed 3D concatenated torus automorphisms. The adjacent pixels are taken in 

horizontal, vertical, and diagonal directions, respectively. We can see that the adjacent pixels 

in the plain image have high correlations, while those in the cipher image have low 

correlations. 

 
Fig. 7. Distributions of the Adjacent Pixels 

 

In order to measure the correlation performances between adjacent pixels, the correlation 

coefficient r  is computed by the following formula: 

 

 

   

     
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                             (21) 

 

where x  and y  are the gray values of the adjacent pixels. Note that the adjacent pixels can be 

taken in horizontal, vertical, or diagonal directions. The smaller the correlation coefficient is, 
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the more chaotic the image is. Table 5 shows the correlation coefficients of the six schemes. 

We can see that the plain images have high correlations between adjacent pixels, while all the 

cipher images encrypted by the six schemes have low correlations. This means that the 

proposed 2D and 3D concatenated chaotic maps provide the cipher images as strong chaos as 

the existing methods. 
 

Table 5. Correlation Coefficients 

Image Tiffany Baboon Parrot Goldhill Barbara Peppers Cameraman Lena Firefighter 

h
o

rizo
n

tal 

Plain Image 0.892 0.849 0.953 0.941 0.901 0.909 0.905 0.879 0.924 

2D Cat Map [15] 2.1e-2 2.1e-2 4.7e-3 -1.7e-3 9.2e-3 2.3e-2 6.1e-5 1.5e-2 2.8e-3 

3D Cat Map [17] 1.0e-2 1.0e-2 1.6e-3 -8.9e-4 6.9e-3 1.4e-2 -2.7e-4 6.9e-3 2.0e-3 

3D Logistic Map 

[12] 
-1.7e-2 7.2e-3 -2.2e-4 -2.3e-2 1.6e-2 1.9e-2 3.0e-3 -8.0e-3 9.4e-3 

3D Bit-Level 

Permutation [7] 
4.1e-3 4.7e-3 1.1e-2 -1.1e-2 5.8e-3 -7.5e-4 -3.1e-3 -2.5e-3 5.8e-3 

Proposed (2D) -6.1e-3 -1.3e-2 4.6e-4 -1.1e-2 -4.3e-3 -4.4e-3 -7.2e-3 -3.9e-3 -2.6e-3 

Proposed (3D) 1.3e-2 -9.1e-3 2.5e-3 7.2e-3 1.6e-2 -1.7e-3 3.7e-3 -7.4e-3 8.4e-4 

v
ertical 

Plain Image 0.922 0.853 0.975 0.945 0.94 0.936 0.938 0.941 0.939 

2D Cat Map [15] 2.0e-3 2.0e-2 9.5e-3 5.4e-3 1.7e-2 1.7e-2 3.0e-3 1.6e-2 6.6e-3 

3D Cat Map [17] 3.2e-4 1.4e-2 4.7e-3 5.5e-3 1.1e-2 8.8e-3 2.7e-3 1.2e-2 4.9e-3 

3D Logistic Map 

[12] 
-2.2e-3 -1.8e-3 -4.0e-4 -6.5e-3 1.1e-2 -3.2e-2 3.4e-3 -6.1e-3 -8.6e-3 

3D Bit-Level 

Permutation [7] 
-2.3e-2 -1.2e-2 -1.6e-2 7.1e-3 7.9e-3 -7.8e-4 5.6e-3 -7.1e-3 9.5e-3 

Proposed (2D) -2.3e-3 -2.1e-3 -5.3e-3 -2.6e-3 6.4e-4 -2.8e-3 -3.7e-3 -4.2e-3 -2.3e-3 

Proposed (3D) 1.6e-2 -1.9e-2 1.5e-2 3.5e-3 4.7e-4 1.0e-2 1.2e-2 1.0e-2 6.1e-3 

d
iag

o
n

al 

Plain Image 0.841 0.79 0.93 0.899 0.847 0.86 0.869 0.842 0.891 

2D Cat Map [15] 3.0e-3 2.1e-2 9.7e-3 5.8e-3 1.8e-2 1.8e-2 3.8e-3 1.8e-2 7.6e-3 

3D Cat Map [17] 2.9e-3 1.4e-2 5.0e-3 6.2e-3 1.4e-2 9.1e-3 5.1e-3 1.3e-2 5.4e-3 

3D Logistic Map 

[12] 
-2.8e-2 3.6e-3 9.4e-3 -8.6e-3 4.4e-3 -1.2e-2 -1.1e-2 -1.1e-2 -1.3e-2 

3D Bit-Level 

Permutation [7] 
-1.1e-2 -7.5e-3 -9.7e-3 -5.7e-4 -1.6e-2 -5.4e-3 -6.5e-3 7.6e-3 -5.0e-3 

Proposed (2D) 2.8e-3 -1.7e-3 -2.0e-3 -2.1e-3 -3.6e-3 -5.0e-3 -6.2e-3 1.4e-3 7.7e-4 

Proposed (3D) 2.9e-2 -7.7e-4 -4.4e-3 8.0e-3 -4.3e-3 -7.0e-4 -5.5e-4 -1.9e-2 -2.6e-3 

5.2 Computational Complexity 

The computational complexity of our proposed scheme is low. Most cryptosystems need high 

computing precision, because it provides large key space for the cryptosystems, such as the 3D 

Logistic Map [12] and the 3D Bit-Level Permutation [7]. But high computing precision leads 

to high computational complexity. For the proposed scheme, all the operations are integer 

operations modulo N, therefore, the computational complexity of the proposed scheme is 

lower than those of the existing methods. 

The number of permutations of the proposed scheme is small. The 3D logistic map [12] 

permutes the pixels of the plain image twice (horizontally and vertically), and the 3D bit-level 

permutation permutes the plain image in bit level. Therefore, their computing times are longer 

than the proposed scheme. The computing time of our scheme is almost the same as that of the 

3D cat map [17]. The computing time of Matlab simulations of the four encrypting schemes is 

shown in Table 6. 
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Table 6. Computing Time (s) 

Round 3D Cat Map [17] 3D Logistic Map [12] 3D Bit-Level Permutation [7] Proposed (3D) 

1 0.015350 0.023624 8.993344 0.016413 

2 0.025744 0.033526 17.823442 0.027742 

3 0.036862 0.042199 26.596119 0.037030 

4 0.047480 0.052959 35.290206 0.046635 

5 0.060780 0.060658 44.246981 0.056610 

6. Security Analysis 

In this section, the performances of the proposed scheme to resist attacks are analyzed. 

6.1 Known-Plaintext Attack 

The known-plaintext attack is an attack method where the attacker has both the plaintext and 

its ciphertext. Using this information, the attacker finds the secret keys. 

In order to resist the known-plaintext attack, a cryptosystem should be sensitive to secret 

keys, and the key space should be large enough to resist brute-force attacks. In the following, 

we analyze the key performances of the proposed concatenated chaotic maps. As we said, both 

the scrambling matrix A  and the iteration times dk  for decryption act as secret keys in our 

cryptosystem. First, we analyze the effect of the scrambling matrix. For the proposed 2D 

chaotic map, assume that the encryption is processed by (14), and the scrambling matrices are 

shown as (16). For decryption, we assume that the right numbers of iterations, 
3dk , 

2dk , and 

1dk , are implemented, but the scrambling matrices for decryption are shown as the following: 

 

1 2 3

1 9 1 8 1 4
,  ,  

12 109 5 41 6 25
A A A

     
       
     

 .                                (22) 

 

Compared with (16), we see that only 2a  is different, and all the other parameters are the 

same. The experimental results are shown in Fig. 8. In this figure, (a) is the original image, (b) 

is the cipher image using scrambling matrices (16), and (c) and (d) are decrypted images using 

(16) and (22), respectively. We see that the same scrambling matrices in encryption and 

decryption lead to successful decryption, while a little difference of the scrambling matrices in 

the decrypting process leads to a strongly chaotic decrypted image, shown as (d). This means 

that the proposed cryptosystem is sensitive to the scrambling matrix. This phenomenon can be 

explained easily based on the sensitivity of the torus automorphism to the scrambling matrix 

[22]. The same situation exists for the proposed 3D concatenated chaotic map, since the 

permutations for the pixels in encryption and decryption are the same.  

http://en.wikipedia.org/wiki/Attack_model
http://en.wikipedia.org/wiki/Plaintext
http://en.wikipedia.org/wiki/Ciphertext
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Fig. 8. Decryption Results by Different Scrambling Matrices 

 

On another hand, incorrect iteration times also lead to failed decryption, since only the 

correct iteration times, which are the recurrence times of the concatenated torus 

automorphisms, can recover the original image, while all the intermediate images are strongly 

chaotic, as shown in Fig. 3 and Fig. 5 and Tables 3-5. 

For a concatenated chaotic map with L  torus automorphisms and module N , since the 

range of ia  and ib  are both N , the key space given by the scrambling matrices is 2LN . On 

the other hand, for the i
th
 torus automorphism of the concatenated chaotic map in the 

decrypting process, the correct number of iterations is 
i id i ek R k   ( 1,2, ,i L ). Since 

1 1
ie ik R   , the range of 

idk  is 1 1
id ik R   . Therefore, the key space given by the 

iteration times is 
1

( 1)
L

i

i

R


 . Then, the total key spaces conS  for both our proposed 2D and 3D 

concatenated chaotic maps are: 
 

2

1

( 1)
L

L

con i

i

S N R


  .                                              (23) 

 

By comparing (23) with (10), we can see that the key space of the proposed scheme is 

exactly the same as that of the conventional torus automorphism when the number L  is one. 

The number of torus automorphisms in the proposed scheme depends on the security 

requirements, and the number can be as large as necessary. Assuming that 5L  , 512N  , 

and 513iR   ( 1,2, ,5i  ), the key space is 15 135512 2conS   . Therefore, the concatenated 

chaotic maps are secure enough to resist brute-force attacks. 

6.2 Chosen-Plaintext Attack 

Differential attack is one of the most popular chosen-plaintext attacks, which is often used to 

attack the image encrypting system. Assuming that there are two images with only one-bit 

difference, the two images are encrypted by the cryptosystem and two cipher images, 1C  and 

2C , are obtained, respectively. By comparing the differences between 1C  and 2C , the 

attackers may trace the relationship between the plain image and the cipher image. Therefore, 

the more different the two cipher images are, the securer the cryptosystem is. Usually, we use 

the number of pixels change rate (NPCR) and the unified average changing intensity (UACI) to 

measure the differences between 1C  and 2C . The NPCR is defined as: 
 

, 1

2

( , )
N

i j

D i j

NPCR
N





.                                                   (24) 
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In (24), ( , )D i j  is defined as 
 

1 1

1 1

1,   ( , ) ( , )
( , )

0,   ( , ) ( , )

c i j c i j
D i j

c i j c i j


 


, 

 

where 
1( , )c i j  and 

2( , )c i j  are the gray values with coordinates ( , )i j  in the cipher images 
1C  

and 
2C , respectively. 

The UACI is defined as: 
 

1 2

, 1

2

( , ) ( , )

255

N

i j

c i j c i j

UACI
N








                                           (25) 

 

In the following experiments, there are two plain images that are almost the same, with only 

one difference in the gray values of the last pixels, i.e., 1 2( , ) ( , ) 1p N N p N N   (mod 256), 

where 
1( , )p N N  and 

2( , )p N N  are the gray values of the pixels with coordinates ( , )N N  in 

the two plain images, respectively. The NPCR and UACI of different encrypting schemes are 

shown in Table 7. In the experiments, the diffusions are implemented five rounds. From the 

table we see that the NPCR and UACI of the first sound are low, no matter which encrypting 

scheme is used. This is because that the different pixel is in the last location, which obstructs 

the diffusion of the difference. For the proposed 3D concatenated chaotic map, the difference 

is diffused to the entire image after the second round, and high NPCR and UACI are achieved 

thereby. The 3D Logistic Map [12] and the 3D Bit-Level Permutation [7] have the similar 

effects, but the diffusing speeds are lower than that of the proposed scheme. For the 3D Cat 

Map [17], since the modifications to the gray values are not diffused, its NPCR and UACI are 

very low. 
Table 7. NPCR and UACI 

Round 
3D Cat Map [17] 3D Logistic Map [12] 3D Bit-Level Permutation [7] Proposed (3D) 

NPCR UACI NPCR UACI NPCR UACI NPCR UACI 

1 6.10e-5 2.39e-7 0.0184 4.45e-4 6.10e-5 2.39e-7 6.10e-5 2.39e-7 

2 6.10e-5 2.39e-7 0.9998 0.2245 0.8120 0.2739 1 0.3314 

3 6.10e-5 2.39e-7 1 0.3309 0.9961 0.3340 0.9961 0.3324 

4 6.10e-5 2.39e-7 0.9922 0.3376 0.9959 0.3348 0.9961 0.3347 

5 6.10e-5 2.39e-7 1 0.3235 0.9963 0.3348 0.9902 0.3353 

7. Conclusions 

A novel cryptosystem based on the concatenated torus automorphisms was proposed in this 

paper. The proposed scheme concatenated several torus automorphisms, which increased the 

recurrence time of the chaotic map, thereby improving the security of the cryptosystem. Based 

on the novel concatenated chaotic map, two application schemes in image encryption were 

proposed, i.e., 2D and 3D concatenated torus automorphisms. Analyses and simulations 

showed that the chaos and key space of the proposed schemes are as good as the existing 

methods, while the speed of diffusion of the proposed schemes is faster, and the computational 

complexity is lower, compared with the existing schemes. 
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