• 제목/요약/키워드: Hypersurface

검색결과 256건 처리시간 0.027초

ON NON-PROPER PSEUDO-EINSTEIN RULED REAL HYPERSURFACES IN COMPLEX SPACE FORMS

  • Suh, Young-Jin
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.315-336
    • /
    • 1999
  • In the paper [12] we have introduced the new kind of pseudo-einstein ruled real hypersurfaces in complex space forms $M_n(c), c\neq0$, which are foliated by pseudo-Einstein leaves. The purpose of this paper is to give a geometric condition for non-proper pseudo-Einstein ruled real hypersurfaces to be totally geodesic in the sense of Kimura [8] for c> and Ahn, Lee and the present author [1] for c<0.

  • PDF

A NOTE ON LIGHTLIKE HYPERSURFACES OF A GRW SPACE-TIME

  • Kang, Tae Ho
    • 대한수학회논문집
    • /
    • 제33권1호
    • /
    • pp.305-315
    • /
    • 2018
  • This note provides a study of lightlike hypersurfaces of a generalized Robertson-Walker(GRW) space-time with a certain screen distribution, which are integrable and have good properties. Focus is to investigate geometric features from the relation of the second fundamental forms between lightlike hypersurfaces and leaves of the integrable screen distribution. Also, we shall apply those results on lightlike hypersurfaces of a GRW space-time to lightlike hypersurfaces of a Robertson-Walker(RW) space-time.

FINITENESS AND VANISHING RESULTS ON HYPERSURFACES WITH FINITE INDEX IN ℝn+1: A REVISION

  • Van Duc, Nguyen
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.709-723
    • /
    • 2022
  • In this note, we revise some vanishing and finiteness results on hypersurfaces with finite index in ℝn+1. When the hypersurface is stable minimal, we show that there is no nontrivial L2p harmonic 1-form for some p. The our range of p is better than those in [7]. With the same range of p, we also give finiteness results on minimal hypersurfaces with finite index.

LAPLACE-BELTRAMI MINIMALITY OF TRANSLATION HYPERSURFACES IN E4

  • Ahmet Kazan;Mustafa Altin
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.359-379
    • /
    • 2023
  • In the present paper, we study translation hypersurfaces in E4. In this context, firstly we obtain first, second and third Laplace-Beltrami (LBI, LBII and LBIII) operators of the translation hypersurfaces in E4. By solving second and third order nonlinear ordinary differential equations, we prove theorems that contain LBI-minimal, LBII-minimal and LBIII-minimal translation hypersurfaces in E4.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX HYPERBOLIC SPACE

  • KI, U-HANG;LEE, SEONG-BAEK;LEE, AN-AYE
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.91-111
    • /
    • 2001
  • In this paper we prove the following : Let M be a semi-invariant submanifold with almost contact metric structure (${\phi}$, ${\xi}$, g) of codimension 3 in a complex hyperbolic space $H_{n+1}{\mathbb{C}}$. Suppose that the third fundamental form n satisfies $dn=2{\theta}{\omega}$ for a certain scalar ${\theta}({\leq}{\frac{c}{2}})$, where ${\omega}(X,\;Y)=g(X,\;{\phi}Y)$ for any vectors X and Y on M. Then M has constant eigenvalues correponding the shape operator A in the direction of the distinguished normal and the structure vector ${\xi}$ is an eigenvector of A if and only if M is locally congruent to one of the type $A_0$, $A_1$, $A_2$ or B in $H_n{\mathbb{C}}$.

  • PDF

THE RICCI TENSOR OF REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS

  • Perez Juan De Dios;Suh Young-Jin
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.211-235
    • /
    • 2007
  • In this paper, first we introduce the full expression of the curvature tensor of a real hypersurface M in complex two-plane Grass-mannians $G_2(\mathbb{C}^{m+2})$ from the equation of Gauss and derive a new formula for the Ricci tensor of M in $G_2(\mathbb{C}^{m+2})$. Next we prove that there do not exist any Hopf real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ with parallel and commuting Ricci tensor. Finally we show that there do not exist any Einstein Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

2-TYPE HYPERSURFACES SATISFYING ⟨Δx, x - x0⟩ = const.

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • 제34권5호
    • /
    • pp.643-649
    • /
    • 2018
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigenvectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we proved that a connected 2-type hypersurface M in $E^{n+1}$ whose postion vector x satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle}$, ${\rangle}$ is the usual inner product in $E^{n+1}$, is of null 2-type and has constant mean curvature and scalar curvature.

REAL HYPERSURFACES OF TYPE B IN COMPLEX TWO-PLANE GRASSMANNIANS RELATED TO THE REEB VECTOR

  • Lee, Hyun-Jin;Suh, Young-Jin
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.551-561
    • /
    • 2010
  • In this paper we give a new characterization of real hypersurfaces of type B, that is, a tube over a totally geodesic $\mathbb{Q}P^n$ in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, where m = 2n, with the Reeb vector $\xi$ belonging to the distribution $\mathfrak{D}$, where $\mathfrak{D}$ denotes a subdistribution in the tangent space $T_xM$ such that $T_xM$ = $\mathfrak{D}{\bigoplus}\mathfrak{D}^{\bot}$ for any point $x{\in}M$ and $\mathfrak{D}^{\bot}=Span{\xi_1,\;\xi_2,\;\xi_3}$.