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THE RICCI TENSOR OF REAL HYPERSURFACES IN
COMPLEX TWO-PLANE GRASSMANNIANS

JuaN pE Dios PEREZ AND YOUNG JIN SUH

ABSTRACT. In this paper, first we introduce the full expression of the
curvature tensor of a real hypersurface M in complex two-plane Grass-
mannians G2{C™12) from the equation of Gauss and derive a new formula
for the Ricci tensor of M in Go(C™1+2). Next we prove that there do not
exist any Hopf real hypersurfaces in complex two-plane Grassmannians
G2(C™1?) with parallel and commuting Ricci tensor. Finally we show
that there do not exist any Einstein Hopf hypersurfaces in G2 (C™12).

Introduction

In the geometry of real hypersurfaces in complex space forms or in quater-
nionic space forms it can be easily checked that there do not exist any real
hypersurfaces with parallel shape operator A by virtue of the equation of Co-
dazzi.

But if we consider a real hypersurface with parallel Ricci tensor S in such
space forms, the proof of its non-existence is not so easy. In the class of Hopf
hypersurfaces Kimura [7] has asserted that there do not exist any real hyper-
surfaces in a complex projective space CP™ with parallel Ricci tensor, that is,
VS = 0. Moreover, he has given a classification of Hopf hypersurfaces in CP™
with commuting Ricci tensor, that is, Sé = ¢S (see in [8]) and showed that M
is locally congruent to one of real hypersurfaces of type A, Az, B, C, D and
E, that is, respectively, a tube of certain radius r over a totally geodesic CP¥,
a complex quadric Qm~!, CPLxCP*3", a complex two-plane Grassmannian
G2(C®) and an Hermitian symmetric space SO(10)/U(5).

On the other hand, in a complex hyperbolic space CH™ Ki and the second
author [6] have given a complete classification of Hopf hypersurfaces in CH™
with commuting Ricci tensor and have proved that M is locally congruent to
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a horosphere, a geodesic hypersphere, a tube over a totally geodesic CH® in
CH™.

In a quaternionic projective space QP™ the first author [9] has considered
the notion of S¢; = ¢;S, 1 = 1,2, 3, for real hypersurfaces in QP™ and classified
that M is locally congruent to of Ay, As-type, that is, a tube over QP* with
radius 0 < r < §. Moreover, in also {9] he has classified real hypersurfaces
in QP™ with parallel Ricci tensor is an open subset of a geodesic hypersphere
whose radius r satisfies cot?r = 5L-.

Now let us denote by G2(C™"2) the set of all complex 2-dimensional linear
subspaces in C™*2, Then the formula concerned with the Ricci tensor men-
tioned above is not so simple if we consider a real hypersurface in complex
two-plane Grassmannians G2(C™*2) (See [3], [4], [10], [11], [12] and [13]).

In this paper we study the analogous question related to the Ricci tensor §
for real hypersurfaces in complex two-plane Grassmannians Go(C™*2), which
has a remarkable geometrical structure. The ambient space G2 (C™*?2) is known
to be the unique compact irreducible Riemannian symmetric space equipped
with both a Kéahler structure J and a quaternionic Kihler structure J not
containing J (See Berndt [2]).

In other words, G2(C™*?) is the unique compact, irreducible, Kahler, quat-
ernionic K#hler manifold which is not a hyperk#hler manifold. So, in Go(C™+2)
we have the two natural geometrical conditions for real hypersurfaces that
[€] = Span {¢} or D+ = Span {£1, &2, &3} is invariant under the shape operator.
By using such kinds of geometric conditions Berndt and the second author [3]
have proved the following:

Theorem A. Let M be a connected real hypersurface in Go(C™*2), m > 3.
Then both [¢] and D are invariant under the shape operator of M if and only
if
(A) M is an open part of a tube around a totally geodesic Go(C™*!) in
GQ((Cm+2), or
(B) m is even, say m = 2n, and M is an open part of a tube around a
totally geodesic QP™ in Go(C™T2).

If the structure vector field £ of M in G2(C™%2) is invariant by the shape
operator, M is said to be Hopf real hypersurface. In such a case the integral
curves of the structure vector field £ are geodesics (See Berndt and Suh [4]).
Moreover, the flow generated by the integral curves of the structure vector
field ¢ for Hopf hypersurfaces in Go(C™*?) is said to be geodesic Reeb flow.
Moreover, we say that the Reeb vector field is Killing, that is, L¢g = 0 for the
Lie derivative along the direction of the structure vector field £, where g denotes
the Riemannian metric induced from G(C™%2). Then this is equivalent to the
fact that the structure tensor ¢ commutes with the shape operator A of M in
Go(C™+2).
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When the Ricci tensor S of M in G3(C™2) commutes with the structure
tensor ¢, we say that M has commuting Ricci tensor. Moreover, M is said
to have parallel Ricci tensor if the Ricci tensor S of M in G2(C™*2) has the
property V.S = 0 for the induced covariant derivative V of M.

In the proof of Theorem A we have proved that the one-dimensional distri-
bution [£] is contained in either the 3-dimensional distribution ®* or in the
orthogonal complement © such that T, M = D®DL. The case {A) in Theorem
A is just the case that the one dimensional distribution [£] is contained in D~.
Of course they satisfy that the Reeb vector £ is Killing, that is, the structure
tensor commutes with the shape operator. Then naturally, it satisfies that the
Ricei tensor commutes with the structure tensor (see Remark 5.1 in section 5).
But it can be checked easily that the Ricci tensor is not parallel.

On the other hand, it is not difficult to check that the Ricci tensor S of type
(B) mentioned in Theorem A can not commute with the structure tensor ¢ and
can not be parallel. Then it must be a natural problem to know whether real
hypersurfaces in Go(C™*2) with parallel and commuting Ricci tensor can exist
or not. At least in Theorem A we know that real hypersurfaces of type (A4) or
of type (B) do not have parallel and commuting Ricci tensor. Of course, they
are Hopf hypersurfaces.

Motivated by such a problem the main result of this paper is to prove the
non-existence of all Hopf real hypersurfaces in Go(C™*?) with parallel and
commuting Ricci tensor as follows:

Theorem. There do not exist any Hopf real hypersurfaces in Go(C™+2), m>3,
with parallel and commuting Ricci tensor.

On the other hand, in a complex projective space CP™ Cecil and Ryan
[5] have proved the non-existence property for Einstein hypersurfaces. From
such a view point let us define an Einstein hypersurface in complex two-plane
Grassmannians G(C™*?) as follows:

A real hypersurface M in G2(C™*?) is said to be Einstein if the Ricci tensor
S is given by g(SX,Y) = ag(X,Y) for a constant function a and any vector
fields X and Y on M. Then naturally we know that its Ricci tensor of M in
G2(C™*2) is parallel and commuting. So we also conclude that

Corollary. There do not exist any Finstein Hopf real hypersurfaces in
Go(C™"?), m>3.

In section 2 we recall Riemannian geometry of complex two-plane Grassman-
nians G2(C™*2) and in section 3 we will show some fundamental properties
of real hypersurfaces in Go(C™"2). The formula for the Ricci tensor S and
its covariant derivative V.S will be shown explicitly in this section. In sections
4 and 5 we will give a complete proof of the main Theorem according to the
geodesic Reeb flow satisfying £€D or geodesic Reeb flow satisfying £e®+.
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1. Riemannian geometry of G(C™*?)

In this section we summarize basic material about Go(C™%?), for details we
refer to [1], [2], [3] and [4]. By G5(C™"?) we denote the set of all complex two-
dimensional linear subspaces in C™*2. The special unitary group G = SU(m+
2) acts transitively on G»(C™"2) with stabilizer isomorphic to K = S(U(2) x
U(m)) € G. Then G5(C™*2) can be identified with the homogeneous space
G/K, which we equip with the unique analytic structure for which the natural
action of G on G3(C™*?%) becomes analytic. Denote by g and & the Lie algebra
of G and K, respectively, and by m the orthogonal complement of & in g with
respect to the Cartan-Killing form B of g. Then g = ¢dm is an Ad(K )-invariant
reductive decomposition of g. We put 0 = eK and identify T,G»(C™*?%) with
m in the usual manner. Since B is negative definite on g, its negative restricted
to m x m yields a positive definite inner product on m. By Ad(K )-invariance of
B this inner product can be extended to a G-invariant Riemannian metric ¢ on
G2(C™*2). In this way G2(C™"?) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize
g such that the maximal sectional curvature of (G2(C™*2), g) is eight.

The Lie algebra ¢ has the direct sum decomposition = su(m) & su(2) @ R,
where R is the center of E. Viewing ¢ as the holonomy algebra of Go(C™*?),
the center R induces a Kihler structure J and the su(2)-part a quaternionic
Kahler structure 3 on Go (Cm”). If J; is any almost Hermitian structure in 3,
then JJ, = J1J, and JJ; is a symmetric endomorphism with (JJ;)? = I and
tr(JJ1) = 0. This fact will be used in next sections.

A canonical local basis Jy, Jo, J3 of J consists of three local almost Hermit-
ian structures J, in J such that J,J, 41 = Jo42 = —Ju11J,, where the index
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (G2(C™*2), g), there exist for any canonical local basis Jy, Jo, J3
of J three local one-forms ¢y, g2, g3 such that

(1.1) Vxdy = qui2(X) o1 — @1t (X)Jugo
for all vector fields X on Go(C™*+2).

Moreover, in [2] it is known that the Riemannian curvature tensor R of
G2(C™*2) is locally given by

R(X,Y)Z
= g(Y,2)X — g(X,2)Y + g(JY, Z2)JX — g(JX, Z)JY —29(JX,Y)JZ
(1.2) +z 9(1Y, 2)J, X — g(J, X, Z)J,Y — 29(J, X,Y)J,Z}
+Z 9(J,JY, 2)J,JX — g(J,JX, Z)J,JY},

where {Jy, Ja, Jg} is any canonical local basis of J and X,Y and Z any vector
fields on Go(C™*2).
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2. Some fundamental formulas for real hypersurfaces in Go(C™?)

In this section we derive some fundamental formulas which will be used in
the proof of our main theorem. Let M be a real hypersurface in Go(C™+2),
that is, a submanifold in G(C™*?) with real codimension one. The induced
Riemannian metric on M will also be denoted by g, and V denotes the Rie-
mannian connection of (M, g). Let N be a local unit normal field of M and A
the shape operator of M with respect to V.

The Kahler structure J of G3(C™*?) induces on M an almost contact metric
structure (¢, £,7,g). Furthermore, let Ji, Ja, J3 be a canonical local basis of J.
Then each J, induces an almost contact metric structure (¢,,&,,7,,9) on M.
Using the above expression (1.2) for the curvature tensor R, the Gauss and the
Codazzi equations are respectively given by

R(X,Y)Z
= g(Y, 2)X — g(X, 2)Y
+ 9(8Y, Z)pX — g(¢X, Z)¢Y — 29(6X,Y)9pZ

+ 23 (0(@Y, 2)60,X — (6 X, 2)0,Y — 29(6, X, Y )6, 2}
£ {9(0ubY, 2)6,0X — g(66X, 2)$,8Y }

- (2)¢u$X — n(X)n.(2)u$Y '}

~3 ) g6V, Z) — n(V)g(6udX, 2} &,

+ g(AY, Z)AX 9(AX, Z)AY

and (VxA)Y — (Vy A)X

= n(X)pY —n(Y)pX — 29(¢X,Y)¢
+ Z A (XY —n (Y)do X - 29(6, X, Y)& }
£ (e (6X)6usY —1,(8Y)d,6X )
£ X 6Y) - n(n(6X)}6

where R denotes the curvature tensor of a real hypersurface M in Ga( C™+?).

The following identities can be proved by a straightforward method and will
be used frequently in subsequent calculations:

bv+16 = —&uye,  Pubut1 = Euta,
¢ = ¢u€, N (9X) = n(d. X),
Gv 11X = dpp2X + n41(X)E,
o410 X = =@y 42X + 1, (X)Ep41-

(2.1)
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Now let us put
JX=¢X+’I7(X)N, JUX:¢VX+77V(X)N
for any tangent vector X of a real hypersurface M in G5(C™*2), where N

denotes a normal vector of M in Go(C™"2). Then from this and the formulas
(1.1) and (2.1) we have that

(2.2) (Vxd)Y =n(Y)AX — g(AXY){, Vx{=¢AX,

(2-3) Vx&, = l]v+2(X)fu+1 - QV+1(X)51/+2 + ¢, AX,

(2.4) (Vxé,)Y = — qu11(X) b2 + quy2(X) o 1Y + n(YV)AX
. - g(AXa Y)fl/

Summing up these formulas, we find the following
Vx(¢u€) = Vx ()
= (Vx9)é + d(Vx&)
= @ui2(X)bu11€ — Q1 (X)bu128 + ¢ dAX
- 9(AX,€)& + (&) AX.
Moreover, from JJ, = J,J, v =1, 2,3, it follows that

(2.6) ¢ X = ¢ 90X + (X)) — n(X)&y.

3. Proof of main theorem

(2.5)

Now let us contract Y and Z in the equation of Gauss in section 2. Then
the Ricci tensor S of a real hypersurface M in G(C™*?) is given by

SX = ZTZ_IR(X, ei)ei
= (4m +10)X ~ 3n(X)E ~ 3% _ n(X)&
(3'1) + Z Tr(»bu ¢V¢X - (¢u¢)2X}
- Z Am(©)d.6X —n(X)$,$€.}

—Z {(Tr ,¢)n(X) = 1($,$X)}E, +RAX — AX,

where h denotes the trace of the shape operator A of M in G3(C™*?). From
the formula JJ, = J,J, Tr JJ, = 0, v = 1,2, 3 we calculate the following for
any basis {e1,...,e4m_1, N} of the tangent space of G5(C™+?)

0="Tr JJ,

~4dm—1
(3.2) =D s g(JJvex,er) + g(JJ,N,N)

=Tr ¢¢u "nu(é) _g(JvNa JN)
= Tr ¢¢, — 27, (5)
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and
(Bv8)* X = d( X — nu(X)E +n(X)E,)
(3.3) =6u (= X + (6, X)) +1(X), ¢
=X — 0, (X)& + (8 X) € + n(X){ =& + m (£)E}-
Substituting (3.2) and (3.3) into (3.1), we have

SX =(4m +10)X — 3(X)€ ~3 " _ m(X)¢

+ Z A (©)8dX — X = (9. X)$u€ = n(X)m ()€}
+hAX — A’X

—(4m + )X — 3n(X)E 3% _ m (X,

+ Z An(©)¢,8X —n(¢y X) b€ — n(X)m(€)6}
+ hAX A%X

(3.4)

Now the covariant derivative, bearing in mind that S is parallel, of (3.4)
becomes

(Vy8)X
=—3(Vyn)(X)§ - 3n(X)Vy§
- 32 (Vym)(X)é - 32 X)Vy&,
3 { )9udX +1,(6)(Vy §)9X
(3:5) + nu<f>¢u<vy¢> — (Vy (¢ X)bu€
= n((Vy ) X)9u§ — (6, X)Vy (6€)
— (D) (X)), — n(X)Vy (0 (€))& — (X (E)Vy &y }

+ (YR)AX + h(Vy A)X — (Vy AH)X
=0.
Then from (3.5), together with the formulas in section 2, we have
(VyS)X
= —3g(¢AY, X)€ - 3n(X)pAY

— 32 {qu+2 77u+1(X) - qv+1(Y)7]V+2(X)
(3.6) + g(¢>VAY X))}

- 32 X{go+2(Y)évr1 — @41(Y )&tz + ¢ AY'}
+ Z [ ENddX + 1, () {—av+1(Y)du120X
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+ @u2(Y)$u 110X + 1, (9X)AY — g(AY, ¢ X)E0 }

+ 1 (E{N(X) P, AY — g(AY, X)¢,€} — g(PAY, ¢ X)$u €
F a1 (V)n(Gu42X) — qur2(Y)n(dv+1X) — m(X)n(AY)
+n(€)9(AY, X)}¢u€

— (D X H{v12(Y)br 416 — ui1(Y)Pu426 + dupAY

- n(AY)&, + (&) AY'}

— 9($AY, X, ()6 — n(X)Y ()&, —~ (XM (O)V &,
+ (Yh)AX + h(Vy A)X — (Vy A X

=0.
Putting X = £ in (3.6), we have
0=-3pAY
- 32 {@u2(Y)41(8) = @1 (V)142() + 9(80AY, €)}E,
- 32 {QV+2 )gu-‘rl - qy+1( )§u+2 + d),,AY}

(3.7)
£y [ {6, AY = 1(AY)4,E} — 9($AY, 6,)9.

- Y(nu(g) 51/ - 771/ g){qu+2 §u+1 - QV+1( )51/4—2 + d)uAY}:'
+ (Yh)AE + h(Vy A)E — (Vy A%)E.

Now if we suppose that M is a Hopf hypersurface in G2(C™*?%), then (3.7)
together with A¢ = o€ implies

0 =(ha — a? — 3)pAY + Y (ah)é — hAPAY — (Ya2)¢ + ApAY
~0Y e - qu+1(Y>ny+z<£>}5u
(3.8) =55 gAY 08 43 (€Y
+43_ n©an (Ve —32 )¢, AY
=3 O(AY) + g(BAY, 4,6) 1€,

Now we should verify that g(AD,D+) = 0.
On the other hand, by differentiating A{ = af and using the equation of
Codazzi in section 2, we have the following

- 29(¢X,Y) + 22 e (X)m (8Y)

-n(Y )nu(¢X) (¢VX Y)T/u(g)}
=g9((VxA)Y — (VyA)X,§)
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= g((VXA)f, Y) - g((vYA)ga X)
= (Xa)n(Y) — (Ya)n(X) + ag((Ag + ¢A)X,Y)
—9g(A$AX,Y).

Putting X = £ gives Ya = (Ea)n(Y) — 4232177,,(5)17,,((;5Y). From this, substi-
tuting into the above equation, we have the following

APAY =9(A¢> + GAY + oY

(39) 3 (V)06 + m(BY)E +m(€)g,Y
- 277(Y)771/(£)¢§u - 277V(§>77V(¢Y)§}’

Then substituting (3.9) into (3.8), we have
0 ={ha — a® = 3}¢AY + Y (ha)é — hAYAY — (Yo )¢

+ 3A2¢Y + ASY
+ Z A (V)AGE + 1, (9Y) AL,
+ nu(f)AcbuY 2(Y)n, (§) Adé, — 2am, (§)n, (¢Y )€}
+ ?;(A¢ T GAY + ZpY

(3.10) + %Z A (V)98 + 1 (Y )
+ ()Y — 20(Y )0, (§)¢&w — 2, (§)m ($Y )€ }
- 42 A02(Y)m41(8) = o rr(V)mr2(§) 16w
— 5g(AsAY, )6 ~ 43" _ mu(E)aura (Vv
+ 42 )q+1(Y)éy42 — 32 . (€)d, AY
=3 ((EAY) + g(6AY, ,6)}6.¢,

where we have used A¢ = af in the fourth line. From this let us verify that
g(AD,D1) = 0. In order to do this we suppose that £ = X; + X5 for some
X1€D and Xo€D+. Now putting Y = £ in (3.10), we have

E(ha)€ — (€a”)¢

+ Z A (X2)Ag8y + 1y (X2) Apu€ — 2y (X2) A€}
52 A (X2) 96, + 0y (X2)0€ — 20, (X2) €}

- 42 {qu+2 n+1(8) = @1 (E)ma2(6) }&0



220 JUAN DE DIOS PEREZ AND YOUNG JIN SUH

- 42 )av2(€)vs1 + 42 (©)av+1(€)&v+2

- 4a}: )¢

= 0.

Then by comparing ® and ©1 components in above equation, we have the
following

(3.11) {¢h a®)} X - 4a2 €)X = 0.

From this formula we assert the following

Lemma 3.1. Let M be « Hopf real hypersurface in Go(C™2) with parallel
Ricci tensor. If M has a geodesic Reeb flow &, then either £€D or £€Dt.

Proof.  We proceed by showing that for each z€M, either £€D at z or £€D
at . The result then follows by continuity since £ is a unit vector. First,
consider any point x the open subset U = {zeM|a(z)#0} . If X;(x) = 0, then
et at z. If X;(x)#0, taking its inner product with (3.11), we have

¢(ha) — €(a”) = 0.
From this, together with (3.11) again, we have

(3.12) 4a(z)2 (X2 ()b Xa () = 0.

Then it is not difficult to verify that a nontrivial linear combination of ¢1, g2
and ¢3 can not be singular. Thus 7,(X2) = 0 for v = 1,2,3. This gives
Xo(z) = 0 and that £€D at z.

Now consider a point z where a = 0. Suppose that o vanishes in a neigh-
borhood of the point z. Then by differentiating A = 0 and using the same
method as in Berndt and the second author [3], we have the following for any
tangent vector field Y

(3.13) Ya = (£a)n 42 £)n, (oY).
This gives
3
(3.14) Y & (¢Y)=0.
From this, replacing Y by ¢Y for any Y €®, we have
3.15 ’ In(y)=0
( . ) Zyzlm(f) 77( ) =Y
On the other hand, replacing Y by ¢Y into (3.14), we have
3 3 2
(3.16) Yo m@n) =3 n(€) ).

Then by putting ¥ = §,,, u = 1,2, 3, respectively, into (3.16), we have

1-3_ n(©*m() =0
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for p = 1,2,3. From this we consider the following two cases :

(3.17) Zizlny(g)Q =1orn,(&) =0for u=1,2,3.

At a point satisfying the first case of (3.17) we have £€D+ of (3.17) we have
£€D (since the D*-component of ¢ has length 1). For points satisfying the
second case of (3.17), we know £€D.

Finally, we consider a point z such that a(z) = 0 but the point « is the
limit of a sequence of points where a£0. Such a sequence will have an infinite
subsequence where X, = 0(in which case £€D1 at z, by continuity) or an
infinite subsequence where X; = 0(in which case £€D' at ). This completes
the proof. O

By virtue of Lemma 3.1, for the proof of our Main Theorem, in section 4
we will consider the first case where M has a geodesic Reeb flow with £€D.
In section 5 in order to complete the proof of our Theorem we will discuss the
remaining case where M has a geodesic Reeb flow with £€D+.

4. Real hypersurfaces with geodesic Reeb flow satisfying (€D

Let us consider a Hopf real hypersurface M in Go(C™1?) with parallel and
commuting Ricci tensor. Now in this section we show that the distribution D
of M in G2(C™+?) satisfies g(AD,D1) = 0. Then by differentiating S¢ = ¢S
and using VS = 0 we have

(4.1) 1(SY)AX — g(AX, SY)E = n(Y)SAX — g(AX,Y)SE.
Moreover, by (3.4) and £€D we have
S¢ = 4(m + 1)€ + hAE — A%¢,

SY =(4m+ 7)Y - 3n(Y)¢ - 323_1’%(3’)&,

- Z Y)bu€ + hAY — A%Y,

n(SY) = g(¢, SY) = {4(m +1)+ah- aQ}n(Y)-
Substituting these formulas into (4.1), we have
{4(m +1) +ah — a2}n(Y)AX

- {(4m+ Tg(AX,Y) — 3n(V)n(AX) — 32 Y)m (AX)
) - Z 9(6u€, AX) + hg(AX, AY) — g(AX, AQY)}f
4.2
(Y){(4m +T)AX — 3n(AX)E — 32 m(AX)E,

- Z n(d AX )by + hAZX — A3X }
- g(AX, Y){4(m + 1)¢ + hAE — A%}
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for any vector fields X and Y on M. Putting X = ¢, in (4.2) and using £€D,
we have

(4.3) A3§u :hA2§u +(o” - ah) A,

where we have used Zi:ﬁ?u(@)%(AX) =g(AX,¢,) and g(#€,, &) = 0. Now
putting Y = £ in (4.2), we have

{4(m +1) + ah — &®}AX — {(4m + T)n(AX) — 3n(AX)
+ahn(AX) — o®n(AX)}¢
U “llam+ 74X ~30m(X)e 35" m(AX)6 -3 0(6,4X)0.8
+ RAZX — A3x] — n(AX){4(m + 1) + (ah — o2)¢}.
Then it follows that
(3 —ah+ o?)AX + hA®X — A3X — 3an(X)¢
33 m(AX)E - Y n(6,AX)b.E =0,
From this, putting X = £, we have
A%, =hA%E, + (o — ah) AE, + BAE,
~3Y (A6~ (BuAL)B.E.
By comparing (4.3) and (4.5) we have

(4.6) 3A¢, = 3Z M (AEL)E, + Z I IRNS
From this, if we take an inner product with ¢,£, we have

3g(A£#, ‘75/\5) = n(d)/\AE,u) = —g(Af#, ¢>\€)

So we have g(A,,#r€) = 0. From this, together with (4.6), it follows that
g(AD,D1) = 0. Then by Theorem A we know that M is locally congruent to
a real hypersurface of type (B), because £€D.

(4.5)

Now it remains to check whether the Ricci tensor of real hypersurfaces of
type (B) is parallel or not. So let us suppose that the Ricci tensor S of type
(B) is parallel. That is, (VyS)X = 0. Then in such a case £€D, if we put
X = ¢ in (3.5), the parallel Ricci tensor implies

0=(VyS)¢
—3vy§--32 (Vym)(§
+ 30, = (Tyn)@O8E — n((Tr6.)6.8}

+ h(VyA){ — (Vy A2
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Since we have assumed that M is a Hopf hypersurface, it follows that

0= 36AY +33"._m(6AV)& — 3, m(AV)gu
+ ah¢AY — hAPAY — o?pAY + A2$AY.

(4.7)

Now let us introduce Proposition B due to Berndt and the second author [3]
as follows:

Proposition B. Let M be a connected real hypersurface of Go( C™2). Sup-
pose that AD C D, AL = af, and £ is tangent to ©. Then the quaternionic
dimension m of Go(C™*?) is even, say m = 2n, and M has five distinct con-
stant principal curvatures

a=—2tan(2r) , S =2cot(2r) , y=0, A=cot(r), p = —tan(r)
with some r € (0,7/4). The corresponding multiplicities are
ma)=1, m(B)=3=m(y), m(A) =4n—4=m(p)
and the corresponding eigenspaces are
To=RE, Tp=3JE, T, =3¢, T, Ty,
where
ThoT,=HC)", =T\, IT,=T,, JIr=T, .
Putting Y = £,€T in (4.7), then by Proposition B we have
(4.8) (ah —a? —4)B =0.
On the other hand, the trace h of type (B) is given by
h =a + 6.cot 2r + (4n — 4)(cotr — tanr)
=q + (4n — 1)(cotr — tanr).

Then substituting this into (4.8), we have 0 = —16n, which makes a contradic-
tion.

5. Real hypersurfaces with geodesic Reeb flow satisfying £€®+

Now let us consider a Hopf real hypersurface M in G2(C™*?) with parallel
and commuting Ricci tensor. In this section we discuss geodesic Reeb flow
satisfying £€D1. Since we have assumed that £€D+ = Span {¢;, &2, €3}, there
exists an Hermitian structure Ji€J such that JN = J1 N, that is, £ = £;.

Now differentiating S¢ = ¢S implies the following
(VyS)oX + 5(Vyg)X = (Vy¢)SX + ¢(VyS)X.
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Now let us calculate term by term in above formula as follows :
(VyS)eX
= — 3g(pAY, $X)é — 32 Aw2(Y)1041(6X) = ua (Y )042(6X)
+ 9(¢. AY, 9 X)}E,
3 7
- 32 (X {qr2(V)evs1 = @i (V)évsz + S ADX }
+ Z {Y(nu )b d* X + 0 (O —qv+1(Y)bv12¢°X

(5.1)  +as2(V)110°X + 1, (¢*X)AY — g(AY, ¢*X)E, }
—m(§)g9(AY, ¢ X)b.& — g(pAY, ¢, 6 X)), €
H{@+1 (YIS0 +20X) — @ui2(Y)n(du+16X)
— m(@X)N(AY) + n(&)g(AY, $X)} b€
— (v dX )@ 42(Y)br 1€ — @1 (Y)bu42€

+ G $AY —n(AY)E, +1(6)AY} — gAY, 6X)n, (€]
+ (Yh)ApX + h(Vy A)pX — (Vy A%)¢ X,

S(Vy¢)X
=n(X)5(AY) - g(AY, X)S5¢

= (X) [(4m + TYAY — 3n(AY)E — 32 m(AY)E,
G Y (O6AY — (e, AY)6¢
~n(AY ) (€)6,} +hA%Y ~ A%Y ]
~ g(AY, X) { m+1)é — 42 m(£)&, + hAE — A2§]
(5.3) (Vy¢)SX =n(SX)AY — g(AY, SX),

¢(VyS)X
= —3n(X)$*AY

- 32 {q,,+2 Mv+1(X) = @1 (Y)ne12(X) + 9(6, AY, X)}6,
- 32 X){gu12(Y)Pbu11 — quia (Y)$€uy2 + ¢4, AY }

1
. [ £)69u6X +m(E){~au41(Y)$b+20X
+ qu+2(Y>¢¢u+1¢X + 7 (9X)PAY — g(AY, 6X)6E,}

+ 1 ({n(X)96, AY — g(AY, X)$6,€} — g(#AY, 6, X)d,
a1 (V)n(¢v42X) — qur2(Y)n(dp41X)
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= m(X)M(AY) +n(&)9(AY, X) }éd.€
— (P X ){@u12(Y)pby11€ — @ 41(Y) PP 428 + 9, AY
(5.4) - 77(AY)¢>77V + n(fu)¢AY}

— 9(AY, X),(€)06, —n(X)Y (n.())86, — n(XIn(#Vv&, |
+ (Yh)pAX + hp(Vy A)X — ¢(Vy A2 X,
where we have used the formulas related to the Ricci tensor S given by
3 3
SE=(4m+T)E-36-3) vy m(§)é + hAE - A%
m+1 § 42 771/(5 &+ ha—az)g,

g(S€,AY) = 4(m + 1) Z &)y (AY) + (ha — o?)n(AY)
= {4(m+ Da+ (ha — ®)}an(Y 42 & (AY),
and
n(SX) =4(m+ 1)y 32“

+ Z A (@ (8 X) = n(X)n. (€)%}

+ hn(AX) n(A%2X)
= 4(m + n(X) - 3n(X) — n(X) + (ah — ®)(X)
= {4m + a(h — o) }n{X).

Now let us consider the case where £ € D1, ¢ = £ for a Hopf hypersurface in
G2(C™*1). Then it was known that

m(¢X) =0, m(¢X) = —g(d2, X) = ns(X),
and
n3(¢X) = —g(¢€3, X) = —ma2(X).
By using these formulas to (5.1), (5.2), (5.3) and (5.4) respectively, we have

(VyS)eX
=—3{g(AX,Y) —an(X)n(Y)} -3 _ g($,AY,$X)E,
— 3n3(X) P2 APY + 3n2(X) 3 AdY )
(5:5) 4+ [ = () {-gsX +n(X)e} +as(Y){~¢aX — n(X)éa)
— g(AY, ¢ X)€| + {g(AY, ¢2X) = ma(X)n(AY) + n(X)ma(AY )}6s

— {9(AY, $3X) + n2(X)n(AY) — n(X)n2(AY ) }E2 + m2(X) 29 AY
+ 13(X)p3pAY + (Yh)ApX + h(Vy A)pX — (Vy A®)pX,
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S(Vy¢)X
=n(X)S(AY) — g(AY, X)S¢

=n(X)[(4m +7)AY - 3an(Y)¢ — 32 L(AY)E,
5.6 + G18AY — n(¢2AY )ot — n(¢3AY>¢3£ n(AY )¢
+ RAZY — A3y] — g(AY, X){4m¢ + hAE — A%¢)
=n(X)[(4m+ T)AY = Tan(Y) - 2ma(AY )&, — 2ns(AY )¢
+ $1AY + hAZY — A3Y] — 9(AX,Y){4m + (h— a)a}e

and the term in the right side becomes respectively

(Vy¢)SX =n(SX)AY — g(AY,5X)¢

(5.7) ={4m + a(h — a)}In(X)AY — g(AY,SX)¢,
and
H(VyS)X
— — 4(X)$2AY
+39(¢2AY, X )&3 — 39(¢3AY, X)&, — 3m (X)pp AY
(5.8) — 31m2(X) P2 AY — 3n3(X )P AY

+{~02(Y)¢p30X + q3(Y) 20X } + n(X)pp1 AY
+ 9(9AY, 92X )&z + g(PAY, 3 X )3 — n3(X)Ppdap AY
+ 72(X) 920 AY + (Yh)PAX + he(Vy A)X — ¢(Vy A%)X.

Now summing up (5.5) with (5.6) in L and (5.7) with (5.8) in R, we have the
following respectively

L=-3{g(AX,Y) - an(X)n(Y)}¢ -3 g(¢. AY,$X)E,

— 3n3(X)p2A0Y + 3m2(X) @3 AdY

+ [@2(V){¢aX ~n(X)&2} — (V) {2 X + n(X)és}]

+ {9(AY, ¢2.X) — n3(X)n(AY) + n(X)ns(AY)}&3

—{9(AY, ¢3X) + n2(X)In(Y) — n(X)n2(AY ) }&2 + n2(X) 2 AY
+13(X)p3pAY + (Yh)ApX + h(Vy A)pX — (Vy A*)pX

+1(X) [(4m + T)AY = Tan(Y )€ — 2(AY )& ~ 2n5(AY s
)

+ G1pAY + hA%Y — A3Y} - g(AX, V) {4m + (h — a)a)¢,
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and

R ={4m+ a(h — a)In(X)AY — g(AY, SX)¢
— 4n(X)$*AY + 4g($2AY, X)&s — 4g(¢3AY, X )éo
= 3m(X)pp1 AY — 3n2(X)ph2 AY — 3n3(X )3 AY
+{~02(Y)pp30X + q3(Y)pp20 X } + n(X)p1 AY
+ g(@AY, 92X )& + g(AY, 03X )3 — 13(X)pp2p AY
+m2(X)ppspAY + (Yh)BAX + ho(Vy A)X — ¢(Vy A®)X.

Then from L = R it follows that

—3{g(AX,Y) — an(X)n(Y)}§ -3 _ g($AY, 6, X)é,

+3> n(AY)n(X)é, 3> n(AY)n, (X)E,

— 3n3(X) P2 APY + 3n2(X)p3AgY
—{an3(X)n(Y) — n(X)n3(AY)}&s
—{am(X)n(Y) — n(X)n2(AY)}&2
+n(X) [(4m +T)AY — Tan(Y)E — 20 (AY )&, — 2n3(AY)E;

(5.9) + 1pAY + hA?Y — ASY] — g(AX,Y){dm + (h — a)a}e
= {4(m +1) + a(h — a)}In(X)AY — g(AY, SX){ — dan(X)n(Y)¢
+4g(92AY, X)&3 ~ 4g(p3AY, X))o — 3m (X )1 AY
— 312(X)pp2 AY — 3n3(X)pds AY
+{22(Y)m2(X) + gs(Y)m3(X) }¢
+0(X)pd1 AY + 4g(AY, $2X )&z + 4g(SAY, $3X)E3
+13(X)$2AY — n3(X)na(AY )¢ + ana(X)n(Y)és
— n2(X)P3AY — 12 (X)n2(AY )€ + anz(X)n(Y)é2
+ (YR)$AX + hp(Vy A)X — ¢(Vy A%)X.

Putting Y = £ in the formula (5.9), we have
= 3an(X)¢ + 3a Z M (n(X)6 — ans (X)és

— o (X)& - 3o Z N (X)&

+an(X){4m + 7+ (h — a)a}é — an(X){4m + (h — a)a}é
= of4(m +1) + a(h — a)In(X)§ — ag(§, SX)E + 4ag($2€, X)&s

227
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—4og(p3€, X )& — 3amz(X)pp2€ — 3ams(X)ppsé
(5.10)  + {@2(&)ma(X) + ¢3()ns(X)}€ + ams (X) P + ama(X)és
— amp(X)dal + ama(X )& + (Eh)PAX + h (Ve A)X — (Ve AB)X .

Putting X = £ in (5.9), it can be arranged as follows:

3 M (AY)E, — 3n(AY)E + n3(AY)& + na(AY )&

+ [ (4m + 1) AY — Tan(¥)¢ — 2 (AY )& — 205(AY s
+ hA%Y - A3y] — an(Y){4m + (h — a)a}é

(5.11) ={4(m+1) + a(h — a)}AY
~ [{4tm + 1)+ (h - @)aYan(v) - 43 n(E)m(AV)]¢
—4on(Y)E + 8g($2AY, §)&s — 89(¢3A;’, £)é2

— 3¢p1 AY + ho{(Ya)¢ + apAY — ApAY}
— o{(Ya?)¢ + a?pAY — A2pAY} .

On the other hand, we know that £ € D1, = ¢;. By the assumption
S¢ = ¢S and VS = 0, we have S(Vy @)X = (Vy#)SX. Then each side can be

calculated as follows:
S(Vy¢)X =n(X)S{AY) — g(AY, X)S¢

= n(X)|(4m + T)AY — 35(AY )¢ 3 Y . (AV)E,
+ D A (€)¢upAY — (. AY)g,¢ - (AY ), (§)6.}
+ h;x?Y - 4%
— 9(AY, X) [4(m + 1)¢ — 43" 0 (€)6, + hA€ - 4%,
and respectively )

(Vy¢)SX = n(SX)AY — g(AY,SX)¢
= {4m + a(h — a)In(X)AY — g(AY, SX)E.

Then using (2.1) to both sides of S(Vy¢)X = (Vy¢)SX, we have the
following

n(X) [(4m + DAY — 4an(¥)E - 33 n,(AV)&, + $16AY

~ ($2AY ) po€ — n(p3 AY )ha€ + hA%Y — A3y]
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- g(AX,Y){4m + (h - a)a}é

(5.12) ={4m +afh - a) n(X)AY — g(AY, SX)E.

From this, if we put X = £, we have

{74 (@ — h)a}AY + hA%Y — A°Y + ¢19AY

—Tan(Y)€ — 2m(AY )& — 2n3(AY )3

— {4m + (h — a)a}on(Y)E + g(AY, SE)¢
=0

()

where the last term is given by

9(AY, 8€) = {4(m + 1o+ ha® = *}n(Y) =4 _ n.(€)n.(AY)
= {4m + ha — o*}an(Y).

Thus the formula () implies the following for Hopf real hypersurfaces in
G(C™t1) satisfying £ € D+
A3Y — hA?Y — {7+ (o — h)a}AY — ¢10AY + Tan(Y)E

(5.13) (Y Ve + 205(AY)Es = 0.

Then from (5.7) and (5.13) we have
3D m(AY)E, — 3n(AY)§ + n3(AY)&s + ma(AY s

+ [(4m + 1)AY — {7+ (o — h)a}AY - g
—an(YY{4m + (h — a)a}é

= {4(m +1) + a(h — a)}AY
~ [(40m + Da + ha? = a*n(¥) = 43 m(E)m(AY)]¢
— 4an(Y )€ + 8g(d2AY, £)€3 — 8g(d3 AY, £)é2
_ 3¢ AY + h${(Y )€ + apAY — APAY}
— ¢{(Yo2)¢ + a?pAY — A%pAY }.

(5.14)

Then (5.14) can be rewritten as follows:

(4 — ah + o> AY = 2¢10AY + afd — alh — a)In(Y )€ — n3(AY )€

(5-15) — 9ma(AY)E, + hGpAGAY — pA2HAY.
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On the other hand, from S¢ = ¢S it follows that
h¢pAX — pA%X
= hAX — A29X — 3 "m,(¢X)E, + 018X — > (b dX)$é
+3) o (X)ph, — $h18X + > (¢ X)%E,

= hApX — A2$X — 312($X )€z — 3n3($X )& + ma(X) ot
+03(X) s + 3ma(X)$a + 3ns(X) s — > (6 X)E,

(5.16)

= hApX — A%pX.
By virtue of this formula, (5.15) can be calculated as follows:
(5:17) 3¢19AY +3AY = a3 + a(h ~ a)}n(Y)E + 412 (AY )€z + 4n3(AY )és.

Then by putting ¥ = £ in (5.17), we have a?(h — @) = 0, which implies a = 0
or a = h. Moreover, if we take Y € ® and make an inner product (5.17) with
&, then we have

42 (AY) = 3g(h10AY, &) + 39(AY, &)
(5.18) = 39(AY, ¢&3) + 39(AY, &2)
= 67]2 (AY)7

where we have used ¢¢p1&s = ¢€3 = P3€ = P& = £5. From this it follows
that 72(AY) = 0. Similarly, we have n3(AY) = 0. Then we can assert that
g(AD,D1) = 0. Moreover, we know that £€D' in this section. Then by
virtue of theorem due to Berndt and Suh [3], M is locally congruent to a real
hypersurfaces of type (A), that is, M is a tube over a totally geodesic Go(C™*1)
in Gz ((Cm+2).

Related to hypersurfaces of type (A) in Theorem A we introduce another
Proposition due to Berndt and the second author [3] as follows:

Proposition C. Let M be a connected real hypersurface of Go( C™*2). Sup-
pose that AD C D, Af = af, and £ is tangent to DL. Let JL€J be the almost
Hermitian structure such that JN = JiN. Then M has three (if r = n/2) or
four (otherwise) distinct constant principal curvatures

o= V8cot(V8r) , 8=v2cot(v2r), A= —V2tan(vV2r), p =0
with some v € (0,7/4). The corresponding multiplicities are

m(a) =1, m(B) =2, m(A) =2m — 2 = m(u),
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and the corresponding eigenspaces we have
T, =R{=RJN,
Ts =C*+¢ =CN,
T\ ={X|X1H¢ JX = J, X},
T, ={X|X1H¢, JX =-J1 X}
First, let us check whether real hypersurfaces of type (A) in G,(C™*?)

satisfy that its Ricci tensor is parallel or not when the geodesic Reeb flow of
£e€D satisfies h = a. Then we have

a=h=a+28+ (2m—2)A=a+28—2(m —1)v2tanv2r.
Thus we have v/2cot v2r = 8 = \/§(m — 1) tan+/2r. So, we obtain
(519) tan2 \/§T = '7;;"1:‘—{
Then from VS =0, by (3.7) we have
(5.20)
0==30AY — 3{ga(Y)n2(§) — q2(Y)n3(€) + g(1AY, £)

— Har(V)ns(€) = aa(Y ) (€) + g(¢2AY, €)}¢o

~ a2V )m(§) — (Y )ma(€) + 9(#AY, £)}

=33 (Y)&2 ~ a2(Y)és + 14}

+ [{$14Y — 5(AY)$1€} = gAY, 91661 — g(BAY, $26) 626

— 9(BAY $5)65€ — {as(Y)ea - @2(¥)és + 1AV }]
+ (Yh)AE + h(Vy A)E — (Vy A%)E
=~ 3¢AY — 3¢ AY — dn3(AY )& + 42 (AY )€ — q3(Y)E2 + q2(Y)Es
+h{(Ya)¢ + apAY — APpAY} — {(Ya?)¢ + a?pAY — A%2pAY}
=—30AY — 391 AY — 6m3(AY)&e + 6m2(AY )5
+ h{agAY — ApAY } — {02 pAY — A2HpAY},
where we have used ¢3(X) = 273(AX) and ¢2(X) = 2n2(AX) derived from

the equation Vx&; = Vx¢ = ¢AX and (2.3). From this, substituting these
formulas A = af, Aéy = B&y, A&y = B¢ and putting YV = &3, we have

0= —3¢A& — 3¢1 AL + 6863 + h(agAb, — APAE,) — (a?PAE; — A’PAL).
So we have
0=68—hB(a—B)+ B(a® — §%) = B{6 — h(a — B) + o* — 3*}.
Since § # 0, it follows that
6 =h(a—pB) — (a® = %) = (a = B){h — (e + B)}.
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On the other hand, its trace of the tube of type (A4) in Theorem A becomes
h=a+26+ (2m—-2)A+ (2m—2)u
= o+ 26+ (2m - 2)(—V2tan V2r),
a—f=v8cot V8 — V2 cot V2r
= 2v2cot 2v2r — V2 cot V2r
= v/2(cot v2r — tan v/2r) — v/2 cot V2r
—v/2tan \/ir,

Il

and

h—(a+8)=8-(2m—2)V2tanV2r
= v2cot V2r — (2m — 2)v/2 tan v2r.

Then it follows that
6 = —v2tanv2r{v2cot vV2r — (2m — 2)v/2 tan v2r}
= —2+4(m — 1) tan® V2r.

(5.21) 4 =2(m —1)tan® V2r.

So we have

2
tan®?v2r = —— .
m—1

So by comparing (5.8) with (5.19) and (5.21), we make a contradiction. So
we conclude that M in G(C™*?) with parallel and commuting Ricci tensor
can not exist.

Next let us check whether real hypersurfaces of type (A), that is, tubes over
a totally geodesic Go(C™1!) in Go(C™*+?) satisfy V.S = 0 or not. So we assume
that M satisfies V.S = 0 with vanishing geodesic Reeb flow, that is, a = 0.
Then by putting X = ¢ = £; in (3.5), we have

0=(VyS5)¢
=30y 3Y_ (Vym)(©& —35 _ n(6)Vvé,
(5.22) +{61(Vy 9)E — (Tyn)($26)82€ — (Vym)($a€)dst

= 1((Vy$2)€)¢a = (VT $5)8)6s€ — (Vym) (€& — V& }
+h(Vy A = (Vy A2)¢,

where we have used the fact that the mean curvature of type (A) mentioned in
Proposition C is constant.
On the other hand, from (2.2),(2.3) and (2.4) we have the following formulas

$1(Vy d)¢ = 1 AY,
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(Vyn)¢2€ =9(Vy &, $26) = —g($AY, &)
=g(AY, ¢3¢1) = m2(AY),
(Vyn)gs€ =g9(Vy &, ¢3€) = g(¢AY, &)
=~ g(AY, ¢361) = n3(AY),
(Vy )€ = 1 (Y)¢s€ — g(AY,§)&2,

(Vy¢3)§ = —q1(Y)$2€ — g(AY, §)&s,
and

(Vyn)§ = g(Vv§,€) = g(AE, &) = 0.
Substituting these formulas into (5.22), and bearing in mind that £ = & and
a = 0, we have

0=(VyS)¢
== 3Vy& —3(Vym)(§)é2 — 3(Vyms)(§)&s — 3Vy¢
+ {$1AY — 2 (AY) o€ — m3(AY)¢sé — pAY'}
(5.23) — hAQAY + A%pAY

== 6AY = 3[{-aa(¥) + a(AY)}&2 + {2(¥) — ma(AY)}o]

+ {01 AY +1a(AY)E3 — 13(AY)E — ¢AY'}
— hAQAY + A%pAY.

For a tube of radius r = ﬁ, by Proposition C we know a = V8 cot 3 =

0,8 = ﬁcot% = /2, and \ = —x/itan% = —+/2. Then its trace of the tube
becomes
h=a+28-(2m—2)V2=-2(m—2)Vv2.
Then for any YET_ s such that AY = —V2Y and ¢Y = ¢ Y we know that
(Y)=¢(Y)=0

from the formula Vy§ = Vy&;.

Now if we put Y€T_ s in (5.7) and use ¢Y = ¢1Y given in Proposition C,
we have

0 =— 6pAY — hAPAY + A29AY
(5.24) = — V2{—6¢Y — hAgY + A%pY}
=V2(4 — V2h)¢Y

where in the third equality we have used the fact that the eigen space T_ s is
invariant by the structure tensor ¢, that is, ¢T_ 5CT_ s5.

In fact, in Lemma 12 due to Berndt and the second author [4] we have the
following

4 4
AprY = Y = —5eY = —V241Y,

that is, oY = ¢1Y€T_\/§.



234 JUAN DE DIOS PEREZ AND YOUNG JIN SUH

Then by (5.24) we have
0=4—-V2h=4—vV2{-2(m —2)V2} = 4(m - 1),
which gives a contradiction.

Remark 5.1. It can be easily verified that a real hypersurface of type (A4) in
Theorem A , a tube over a totally geodesic G2(C™*!) in Go(C™*?), has the
property that the Ricci tensor S commutes with the structure tensor ¢.

Remark 5.2. In the paper due to the second author [11] we have proved that
there do not exist any real hypersurfaces M in Go(C™*?) with parallel shape
operator, that is VA = (. Such a geometric condition is stronger than the par-
allelness of the Ricci tensor in this paper. In the paper [12] we also have proved
the non-existence property of real hypersurfaces in Go(C™*2) with commuting
shape operator, that is, A¢; = ¢;A,i=1,2,3.
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