SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX HYPERBOLIC SPACE

  • KI, U-HANG (Dept. of Mathematics, Kyungpook National University) ;
  • LEE, SEONG-BAEK (Dept. of Mathematics, Chosun University) ;
  • LEE, AN-AYE (Dept. of Software development, Dong Shin University)
  • Received : 2001.02.19
  • Published : 2001.07.30

Abstract

In this paper we prove the following : Let M be a semi-invariant submanifold with almost contact metric structure (${\phi}$, ${\xi}$, g) of codimension 3 in a complex hyperbolic space $H_{n+1}{\mathbb{C}}$. Suppose that the third fundamental form n satisfies $dn=2{\theta}{\omega}$ for a certain scalar ${\theta}({\leq}{\frac{c}{2}})$, where ${\omega}(X,\;Y)=g(X,\;{\phi}Y)$ for any vectors X and Y on M. Then M has constant eigenvalues correponding the shape operator A in the direction of the distinguished normal and the structure vector ${\xi}$ is an eigenvector of A if and only if M is locally congruent to one of the type $A_0$, $A_1$, $A_2$ or B in $H_n{\mathbb{C}}$.

Keywords

References

  1. Proc. Amer. Math. Soc. v.69 CR-submanifolds of a Kahler manifold I Bejancu, A.
  2. Geometry of CR-submanifolds Bejancu, A.
  3. J. reine angew Math. v.395 Real hypersurfaces with constant principal curvatures in hyperbolic space Berndt, J.
  4. Kodai Math. Sem. Rep. v.27 Semi-invariant immersion Blair, D.E.;Ludden, G.D.;Yano, K.
  5. J. Differential Geom. v.5 Reduction of the codimension of an isometric immersion Erbacher, J.
  6. Tsukuba J. Math. v.12 Cyclic-parallel real hypersurfaces of a complex space form Ki, U.H.
  7. Korean Annals of Math. v.15 A survey on real hypersurfaces in a complex space form Ki, U.H.
  8. Kyungpook Math. J. v.40 Semi-invariant submanifolds with lift-flat normal connection in a complex projective space Ki, U.H.;Kim, H.J.
  9. J. Korean Math. Soc. v.27 Semi-invariant submanifolds with harmornic curvature Ki, U.H.;Kim, S.J.;Lee, S.B.;Yoo, I.Y.
  10. Kyungpook Math. J. Semi-invariant submanifolds with L-flat normal connection in terms of the Lie derivatives Ki, U.H.;Li, C.;Lee, S.C.
  11. Nihonkai Math. J. v.11 Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space Ki, U.H.;Song, H.;Takagi, R.
  12. J. Korean Math. Soc. v.25 Semi-invariant submanifolds with parallel Ricci tensor of a complex hyperbolic space Kim, S.J.
  13. Comm. Korean Math. Soc. v.14 Semi-invariant minimal submanifolds of codimention 3 in a complex space form Lee, S.C.;Han, S.K.;Ki, U.H.
  14. J. Math. Soc. Japan v.37 Real hypersurfaces of a complex hyperbolic space Montiel, S.
  15. Geom. Dedicata v.20 On some real hypersurfaces of a complex hyperbolic space Montiel, S.;Romero, A.
  16. Real hypersurfaces in complex space forms, in Tight and Taut submanifolds Niebergall, R.;Ryan, P.J.;Cecil, T.E.(ed.);Chern, S.S.(ed.)
  17. Geom. Dedicata v.7 Normal curvature and real submanifold of the complex projective space Okumura, M.
  18. Colloq. Math. Soc., Janos Bolyai Dih. Geom. v.56 Codimension reduction problem for real submanifolds of complex projective space Okumura, M.
  19. Rendiconti del Circolo Mat. di Palermo v.43 n-dimension real submanifolds with (n-1)-dimensional maximal holomorphic tangent subspace in complex projective spaces Okumura, M.;Vanhe, L.
  20. Sugaku in Japaness v.16 Relations between the theory of almost complex spaces and that of almost contact space Tashiro, Y.
  21. Kodai Math. Sem. Rep. v.29 On (f,g,u,v,w,${\lambda}$,${\mu}$,${\nu}$)-structure satisfying ${\lambda}^2$+${\mu}^2$+${\nu}^2$= 1 Yano, K.;Ki, U.H.
  22. CR submanifolds of Kaehlerian and Sasakian manifolds Yano, K.;Kon, M.
  23. Structures on manifolds Yano, K.;Kon, M.