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REAL HYPERSURFACES OF TYPE B IN
COMPLEX TWO-PLANE GRASSMANNIANS

RELATED TO THE REEB VECTOR

Hyunjin Lee and Young Jin Suh

Abstract. In this paper we give a new characterization of real hyper-
surfaces of type B, that is, a tube over a totally geodesic QP n in complex
two-plane Grassmannians G2(Cm+2), where m = 2n, with the Reeb vec-
tor ξ belonging to the distribution D, where D denotes a subdistribution
in the tangent space TxM such that TxM = D⊕D⊥ for any point x ∈ M
and D⊥ = Span{ ξ1, ξ2, ξ3 }.

0. Introduction

The study of real hypersurfaces in non-flat complex space forms or quater-
nionic space forms is a classical topic in differential geometry. For instance,
there have been many investigations for homogeneous hypersurfaces of type
A1, A2, B, C, D and E in complex projective space CPm. They are com-
pletely classified by Berndt [2], Cecil and Ryan [5], Kimura [7] and Takagi
[10]. Here, explicitly, we mention that A1: geodesic hyperspheres, A2: a tube
around a totally geodesic complex projective spaces CP k, B: a tube around
a complex quadric Qm−1 and can be viewed as a tube around a real projec-
tive space RPm, C: a tube around the Segre embedding of CP 1 × CP k into
CP 2k+1 for some k≥2, D: a tube around the Plücker embedding into CP 9 of
the complex Grassmannian manifold G2(C5) of complex 2-planes in C5 and E:
a tube around the half spin embedding into CP 15 of the Hermitian symmetric
space SO(10)/U(5).

But until now there were only a few characterizations of homogeneous real
hypersurfaces of type B, that is, a tube over a real projective space RPm

in complex projective space CPm. Among them, Yano and Kon [11] gave a
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characterization for real hypersurfaces of type B in CPm in such a way that
Aφ + φA = kφ, where k is non-zero constant.

Now let us consider a complex two-plane Grassmannian G2(Cm+2) which
consists of all complex 2-dimensional linear subspaces in Cm+2. This Riemann-
ian symmetric space G2(Cm+2) has a remarkable geometrical structure. It is
the unique compact irreducible Riemannian manifold being equipped with both
a Kähler structure J and a quaternionic Kähler structure J not containing J .
In other words, G2(Cm+2) is the unique compact, irreducible, Kähler, quater-
nionic Kähler manifold which is not a hyper Kähler manifold (See Berndt and
Suh [3], [4]). So, in G2(Cm+2) we have the two natural geometrical conditions
for real hypersurfaces M that [ ξ ] = Span { ξ } or D⊥ = Span { ξ1, ξ2, ξ3 } are
invariant under the shape operator A of M .

The almost contact structure vector field ξ mentioned above is defined by
ξ = −JN , where N denotes a local unit normal vector field of M in G2(Cm+2)
and it is said to be a Reeb vector field. The almost contact three structure
vector fields { ξ1, ξ2, ξ3 } are defined by ξν = −JνN , ν = 1, 2, 3, where Jν

denotes a canonical local basis of a quaternionic Kähler structure J.
By using two invariant structures for the Reeb vector field ξ and the distri-

bution D⊥ = Span { ξ1, ξ2, ξ3 }, Berndt and the second author [3] have proved
the following:

Theorem A. Let M be a connected orientable real hypersurface in G2(Cm+2),
m ≥ 3. Then both [ ξ ] and D⊥ are invariant under the shape operator A of M
if and only if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic QPn in G2(Cm+2).

When the Reeb flow on M in G2(Cm+2) is isometric, we say that the Reeb
vector field ξ on M is Killing. Moreover, the Reeb vector field ξ is said to be
Hopf if it is invariant by the shape operator A. The 1-dimensional foliation
of M by the integral manifolds of the Reeb vector field ξ is said to be a Hopf
foliation of M . We say that M is a Hopf hypersurface in G2(Cm+2) if and only
if the Hopf foliation of M is totally geodesic. By the formulas in Section 2 it
can be easily checked that M is Hopf if and only if the Reeb vector field ξ is
Hopf.

In particular, the second author [8] gave a characterization of type B among
Hopf hypersurfaces in G2(Cm+2) when the almost contact 3-structure tensors
{φ1, φ2, φ3 } commute with the shape operator A on the orthogonal comple-
ment of the one dimensional distribution [ ξ ]. Moreover, he also gave another
characterization of real hypersurfaces of type B in G2(Cm+2) in terms of con-
tact hypersurface, that is, Aφ + φA = kφ, where k is non-zero constant (See
[9]).
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On the other hand, it can be easily seen that the Reeb vector ξ for real
hypersurfaces of type B in Theorem A belongs to the distribution D (See [2]).
Then naturally we are able to consider a converse problem. It should be an
interesting problem to check that whether a real hypersurface of type B, that
is, a tube around a totally geodesic QPn, m = 2n, in G2(Cm+2), is only a
hypersurface with its Reeb vector ξ belonging to the distribution D.

From such a view point, we affirmatively answer for this problem. In this pa-
per we give a new characterization of real hypersurfaces of type B in G2(Cm+2)
as follows:

Main Theorem. Let M be a connected orientable Hopf real hypersurface in
G2(Cm+2), m≥3. Then the Reeb vector ξ belongs to the distribution D if and
only if M is locally congruent to an open part of a tube around a totally geodesic
QPn in G2(Cm+2), where m = 2n.

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details we
refer to [1], [3] and [4]. By G2(Cm+2) we denote the set of all complex two-
dimensional linear subspaces in Cm+2. The special unitary group G = SU(m+
2) acts transitively on G2(Cm+2) with stabilizer isomorphic to K = S(U(2)×
U(m)) ⊂ G. Then G2(Cm+2) can be identified with the homogeneous space
G/K, which we equip with the unique analytic structure for which the natural
action of G on G2(Cm+2) becomes analytic. Denote by g and k the Lie algebra
of G and K, respectively, and by m the orthogonal complement of k in g with
respect to the Cartan-Killing form B of g. Then g = k⊕m is an Ad(K)-invariant
reductive decomposition of g. We put o = eK and identify ToG2(Cm+2) with
m in the usual manner. Since B is negative definite on g, its negative restricted
to m×m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
G2(Cm+2). In this way G2(Cm+2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize
g such that the maximal sectional curvature of (G2(Cm+2), g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature eight. When m = 2,
we note that the isomorphism Spin(6) ' SU(4) yields an isometry between
G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented two-dimensional
linear subspaces of R6. In this paper, we will assume m≥3.

The Lie algebra k has the direct sum decomposition, that is, a Cartan de-
composition

k = su(m)⊕ su(2)⊕R,

where R denotes the center of k. Viewing k as the holonomy algebra of
G2(Cm+2), the center R induces a Kähler structure J and the su(2)-part a
quaternionic Kähler structure J on G2(Cm+2). If Jν is any almost Hermitian
structure in J, then JJν = JνJ , and JJν is a symmetric endomorphism with
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(JJν)2 = I and tr(JJν) = 0. This fact will be used frequently throughout this
paper.

A canonical local basis J1, J2, J3 of J consists of three local almost Hermit-
ian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection ∇̄ of (G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3

of J three local one-forms q1, q2, q3 such that

(1.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).
Let p ∈ G2(Cm+2) and W a subspace of TpG2(Cm+2). We say that W

is a quaternionic subspace of TpG2(Cm+2) if JW ⊂ W for all J ∈ Jp. And
we say that W is a totally complex subspace of TpG2(Cm+2) if there exists
a one-dimensional subspace V of Jp such that JW ⊂ W for all J ∈ V and
JW ⊥ W for all J ∈ V⊥ ⊂ Jp. Here, the orthogonal complement of V in Jp

is taken with respect to the bundle metric and orientation on J for which any
local oriented orthonormal frame field of J is a canonical local basis of J. A
quaternionic (resp. totally complex) submanifold of G2(Cm+2) is a submanifold
all of whose tangent spaces are quaternionic (resp. totally complex) subspaces
of the corresponding tangent spaces of G2(Cm+2).

The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

(1.2)

R̄(X, Y )Z = g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+
3∑

ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY −2g(JνX,Y )JνZ}

+
3∑

ν=1

{g(JνJY, Z)JνJX − g(JνJX, Z)JνJY },

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2(Cm+2)

In this section we derive some fundamental formulae which will be used in
the proof of our main theorem. Let M be a real hypersurface of G2(Cm+2),
that is, a hypersurface of G2(Cm+2) with real codimension one. The induced
Riemannian metric on M will also be denoted by g, and ∇ denotes the Rie-
mannian connection of (M, g). Let N be a local unit normal field of M and A
the shape operator of M with respect to N .

The Kähler structure J of G2(Cm+2) induces on M an almost contact metric
structure (φ, ξ, η, g). More explicitly, we can define a tensor field φ of type
(1, 1), a vector field ξ and its dual 1-form η on M by g(φX, Y ) = g(JX, Y )
and η(X) = g(ξ,X) for any tangent vector fields X and Y on M . Then they
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satisfy the following

(2.1) φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0 and η(ξ) = 1

for any tangent vector field X.
Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν

induces an almost contact metric structure (φν , ξν , ην , g) on M in such a way
that a tensor field φν of type (1, 1), a vector field ξν and its dual 1-form ην on
M defined by g(φνX,Y ) = g(JνX, Y ) and ην(X) = g(ξν , X) for any tangent
vector fields X and Y on M . Then they also satisfy the following

(2.2) φ2
νX = −X + ην(X)ξν , φνξν = 0, ην(φνX) = 0 and ην(ξν) = 1

for any vector field X tangent to M and ν = 1, 2, 3.
Using the above expression (1.2) for the curvature tensor R̄, the equations

of Gauss and Codazzi are respectively given by

R(X,Y )Z =g(Y,Z)X − g(X, Z)Y

+ g(φY,Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ

+
∑3

ν=1
{g(φνY,Z)φνX − g(φνX, Z)φνY − 2g(φνX, Y )φνZ}

+
∑3

ν=1
{g(φνφY,Z)φνφX − g(φνφX, Z)φνφY }

−
∑3

ν=1
{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
∑3

ν=1
{η(X)g(φνφY,Z)− η(Y )g(φνφX, Z)} ξν

+ g(AY,Z)AX − g(AX,Z)AY ,

and

(∇XA)Y − (∇Y A)X = η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
3∑

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX, Y )ξν

}

+
3∑

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}

+
3∑

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν ,

where R denotes the curvature tensor of a real hypersurface M in G2(Cm+2).
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The following identities can be proved in a straightforward method and will
be used frequently in subsequent calculations (See [8] and [9]):

(2.3)

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1.

Now let us note that

JX = φX + η(X)N, JN = −ξ ,

and
JνX = φνX + ην(X)N, JνN = −ξν , ν = 1, 2, 3

for any tangent vector X of a real hypersurface M in G2(Cm+2), where N
denotes a normal vector of M in G2(Cm+2). Then from these and the formulae
(1.1) and (2.3) we have that

(2.4) (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX,

(2.5) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

(2.6)
(∇Xφν)Y = − qν+1(X)φν+2Y + qν+2(X)φν+1Y + ην(Y )AX

− g(AX, Y )ξν .

Summing up these formulae, we find the following

(2.7)

∇X(φνξ) = ∇X(φξν)

= (∇Xφ)ξν + φ(∇Xξν)

= qν+2(X)φν+1ξ − qν+1(X)φν+2ξ + φνφAX

− g(AX, ξ)ξν + η(ξν)AX.

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(2.8) φφνX = φνφX + ην(X)ξ − η(X)ξν .

On the other hand, using the fact, Aξ = αξ, Berndt and the second author
gave the following lemma (See [4]):

Lemma 2.1. If M is a connected orientable Hopf real hypersurface in G2(Cm+2),
then

(2.9)

αg((Aφ + φA)X, Y )− 2g(AφAX, Y ) + 2g(φX, Y )

= 2
∑3

ν=1
{ην(X)ην(φY )− ην(Y )ην(φX)− g(φνX,Y )ην(ξ)

− 2η(X)ην(φY )ην(ξ) + 2η(Y )ην(φX)ην(ξ)}
for all vector fields X and Y on M .
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3. Proof of Main Theorem

Let M be a connected orientable Hopf real hypersurface in G2(Cm+2). Now
let us denote by the distribution D the orthogonal complement of the distribu-
tion D⊥ = Span{ ξ1, ξ2, ξ3 } such that TxM = D⊕D⊥ for any point x ∈ M .

In order to prove our Main Theorem in the introduction we give a key
proposition as follows:

Proposition 3.1. Let M be a connected orientable Hopf real hypersurface in
G2(Cm+2). If the Reeb vector ξ belongs to the distribution D, then the distribu-
tion D is invariant under the shape operator A of M , that is, g(AD, D⊥) = 0.

Proof. To prove this it suffices to show that g(AD, ξν) = 0, ν = 1, 2, 3. In order
to do this, we put

D = [ ξ ]⊕ [φ1ξ, φ2ξ, φ3ξ ]⊕D0,

where the distribution D0 is an orthogonal complement of [ ξ ]⊕ [ φ1ξ, φ2ξ, φ3ξ ]
in the distribution D of the tangent space TxM , x∈M , of M in G2(Cm+2).
First, from the assumption ξ∈D we know g(Aξ, ξν) = 0, ν = 1, 2, 3, because we
have assumed that M is Hopf. Next we assert the formula g(Aφiξ, ξν) = 0 for
i, ν = 1, 2, 3. In fact, by using (2.5) and ξ∈D we have the following:

g(Aφiξ, ξν) = −g(φAξν , ξi)

= −g(∇ξν ξ, ξi)

= g(ξ,∇ξν ξi)

= g(ξ, qi+2(ξν)ξi+1 − qi+1(ξν)ξi+2 + φiAξν)

= g(ξ, φiAξν)

= −g(Aφiξ, ξν),

which gives our assertion (See [6], page 1127). Finally, we consider for the case
X ∈ D0. From (2.9) in above Lemma 2.1, we have

αAφX + αφAX − 2AφAX + 2φX

= 2
3∑

ν=1

{
− ην(X)φνξ − ην(φX)ξν − ην(ξ)φνX

+ 2η(X)ην(ξ)φνξ + 2ην(φX)ην(ξ)ξ
}

for any tangent vector field X ∈ TxM , x∈M . From now on, we show that
g(AX, ξν) = 0 for any X ∈ D0. In order to do this, we restrict X ∈ TxM ,
x∈M to X ∈ D0 unless otherwise stated. Now by taking φ into above equation
and using the fact Aξ = αξ we get

(3.1) αφAφX − αAX − 2φAφAX − 2X = 0

for any X ∈ D0.
Taking inner product in (3.1) with ξµ we have

αg(φAφX, ξµ)− αg(AX, ξµ)− 2g(φAφAX, ξµ) = 0,
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that is,

(3.2) αg(AX, ξµ) = αg(φAφX, ξµ)− 2g(φAφAX, ξµ) for X ∈ D0.

On the other hand, since g(φAφX, ξµ) = g(∇φXξ, ξµ) = −g(ξ,∇φXξµ), we
have

g(φAφX, ξµ) = −g(ξ, φµAφX) = −g(ξµ, φAφX)
by virtue of (2.3) and (2.5). Accordingly, we get

g(φAφX, ξµ) = 0

for any X ∈ D0.
Next let us show that g(φAφAX, ξµ) = 0 for any X∈D0.
In fact, (2.4) and (2.5) give

g(φAφAX, ξµ) = g(∇φAXξ, ξµ) = −g(ξ,∇φAXξµ)

= −g(ξ, φµAφAX) = −g(ξµ, φAφAX),

which gives our assertion. Thus, from (3.2) we know that

(3.3) αg(AX, ξµ) = 0 for any X ∈ D0.

Then we are able to divide two cases as follows:
Case 1. α 6= 0
From (3.3) the conclusion is obvious.
Case 2. α = 0
From an assumption, α = 0, together with (3.1), we have

X = −φAφAX for any X ∈ D0.

From this, let us apply the shape operator A. Then it follows that

(3.4) AX = −AφAφAX for any X ∈ D0.

Taking an inner product of (3.4) and ξµ, we have

(3.5) g(AX, ξµ) = −g(AφAφAX, ξµ) for any X ∈ D0.

On the other hand, we know the following

g(AφAφAX, ξµ) = −g(AφAX, φAξµ) = −g(AφAX,∇ξµξ).

Then it follows that
g(AφAφAX, ξµ) = −g(AφAX,∇ξµξ)

= g((∇ξµA)φAX, ξ) + g(A(∇ξµφ)AX, ξ)

+ g(Aφ(∇ξµA)X, ξ) + g(AφA(∇ξµX), ξ),

where we have used g(AφAX, ξ) = 0. From this, together with Aξ = 0, it
follows that

(3.6) g(AφAφAX, ξµ) = g((∇ξµA)φAX, ξ).

On the other hand, by using the equation of Codazzi in Section 2, we have the
following:
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Lemma 3.2. g((∇ξµ
A)φAX, ξ) = −g(Aξµ, φAφAX)− 4g(AX, ξµ).

Proof. By the Codazzi equation we know

(∇ξµA)φAX = (∇φAXA)ξµ + η(ξµ)φ2AX − η(φAX)φξµ − 2g(φξµ, φAX)ξ

+
3∑

ν=1

{
ην(ξµ)φνφAX − ην(φAX)φνξµ − 2g(φνξµ, φAX)ξν

}

+
3∑

ν=1

{
ην(φξµ)φνφ2AX − ην(φ2AX)φνφξµ

}

+
3∑

ν=1

{
η(ξµ)ην(φ2AX)− η(φAX)ην(φξµ)

}
ξν

= (∇φAXA)ξµ − 2g(ξµ, AX)ξ + φµφAX +
3∑

ν=1

g(φξν , AX)φνξµ

+ 2
3∑

ν=1

g(φφνξµ, AX)ξν +
3∑

ν=1

ην(AX)φνφξµ.

From this, taking an inner product with ξ and using the fact that φφµξ = −ξµ,
we have
g((∇ξµA)φAX, ξ) = g((∇φAXA)ξµ, ξ)− 2g(ξµ, AX) + g(φµφAX, ξ)

+
3∑

ν=1

g(φξν , AX)g(φνξµ, ξ) + 2
3∑

ν=1

g(φφνξµ, AX)g(ξν , ξ)

+
3∑

ν=1

ην(AX)g(φνφξµ, ξ)

= g((∇φAXA)ξµ, ξ)− 4g(AX, ξµ).

On the other hand, since g(Aξµ, ξ) = g(ξµ, Aξ) = αg(ξµ, ξ) and α = 0, we have

g((∇φAXA)ξµ, ξ) = −g(A(∇φAXξµ), ξ)− g(Aξµ, φAφAX)

= −αg(∇φAXξµ, ξ)− g(Aξµ, φAφAX)

= −g(Aξµ, φAφAX).

Therefore we have

g((∇ξµA)φAX, ξ) = −g(Aξµ, φAφAX)− 4g(AX, ξµ)

for any X ∈ D0. ¤

Consequently, from (3.6), Lemma 3.2, the symmetry of the shape operator
A, and together with the fact that Aξ = 0, we get

(3.7) g(AφAφAX, ξµ) = −2g(AX, ξµ).
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From (3.5) and (3.7) for α = 0, we have g(AX, ξµ) = 0 for any tangent vector
field X belongs to the distribution D0.

Then summing up all situation mentioned above we conclude that the dis-
tribution D is invariant under the shape operator of M if the Reeb vector ξ
belong to the distribution D. ¤

Then by Proposition 3.1 and Theorem A we know that a Hopf real hyper-
surface M in G2(Cm+2) with the Reeb vector ξ belongs to the distribution D is
congruent to a tube over a totally geodesic G2(Cm+1) in G2(Cm+2) or a tube
over a totally geodesic QPn, m = 2n, in G2(Cm+1). But in [3] it was known
that the Reeb vector ξ of type A in the first case belongs to the distribution
D⊥. From this we complete the proof of our main theorem in the introduction.

Acknowledgments. The present authors would like to express their deep
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