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REAL HYPERSURFACES OF TYPE B IN
COMPLEX TWO-PLANE GRASSMANNIANS
RELATED TO THE REEB VECTOR

HyunJiN LEE AND YOUNG JIN SUH

ABSTRACT. In this paper we give a new characterization of real hyper-
surfaces of type B, that is, a tube over a totally geodesic QP™ in complex
two-plane Grassmannians G2 (C™12), where m = 2n, with the Reeb vec-
tor £ belonging to the distribution ®, where © denotes a subdistribution
in the tangent space T M such that T, M = ®® D' for any point z € M
and D = Span{&1,£2,83 }.

0. Introduction

The study of real hypersurfaces in non-flat complex space forms or quater-
nionic space forms is a classical topic in differential geometry. For instance,
there have been many investigations for homogeneous hypersurfaces of type
Ay, As, B, C, D and E in complex projective space CP™. They are com-
pletely classified by Berndt [2], Cecil and Ryan [5], Kimura [7] and Takagi
[10]. Here, explicitly, we mention that A;: geodesic hyperspheres, As: a tube
around a totally geodesic complex projective spaces CP*, B: a tube around
a complex quadric Q™' and can be viewed as a tube around a real projec-
tive space RP™, C: a tube around the Segre embedding of CP' x CP* into
CP?+1! for some k>2, D: a tube around the Pliicker embedding into CP? of
the complex Grassmannian manifold Go(C®) of complex 2-planes in C® and E:
a tube around the half spin embedding into CP'® of the Hermitian symmetric
space SO(10)/U(5).

But until now there were only a few characterizations of homogeneous real
hypersurfaces of type B, that is, a tube over a real projective space RP™
in complex projective space CP™. Among them, Yano and Kon [11] gave a
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characterization for real hypersurfaces of type B in CP™ in such a way that
A¢ + ¢A = k¢, where k is non-zero constant.

Now let us consider a complex two-plane Grassmannian G3(C™*2) which
consists of all complex 2-dimensional linear subspaces in C™*2. This Riemann-
ian symmetric space G(C™%2) has a remarkable geometrical structure. It is
the unique compact irreducible Riemannian manifold being equipped with both
a Kéhler structure J and a quaternionic Kéhler structure J not containing .J.
In other words, Go(C™%2) is the unique compact, irreducible, Kihler, quater-
nionic Kéhler manifold which is not a hyper Kéhler manifold (See Berndt and
Suh [3], [4]). So, in Go(C™*2) we have the two natural geometrical conditions
for real hypersurfaces M that [¢] = Span{¢} or D1 = Span {&;,&,,63 ) are
invariant under the shape operator A of M.

The almost contact structure vector field & mentioned above is defined by
¢ = —JN, where N denotes a local unit normal vector field of M in Go(C™+?)
and it is said to be a Reeb vector field. The almost contact three structure
vector fields {&1,&2,83} are defined by & = —J,N, v = 1,2,3, where J,
denotes a canonical local basis of a quaternionic Kahler structure J.

By using two invariant structures for the Reeb vector field ¢ and the distri-
bution D+ = Span { &1, &2, &3 }, Berndt and the second author [3] have proved
the following;:

Theorem A. Let M be a connected orientable real hypersurface in Go(C™*2),
m > 3. Then both [£] and D+ are invariant under the shape operator A of M
if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™*1) in
G2(C™+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic QP™ in Go(C™*2).

When the Reeb flow on M in Go(C™%2) is isometric, we say that the Reeb
vector field £ on M is Killing. Moreover, the Reeb vector field £ is said to be
Hopf if it is invariant by the shape operator A. The 1-dimensional foliation
of M by the integral manifolds of the Reeb vector field £ is said to be a Hopf
foliation of M. We say that M is a Hopf hypersurface in Go(C™*2) if and only
if the Hopf foliation of M is totally geodesic. By the formulas in Section 2 it
can be easily checked that M is Hopf if and only if the Reeb vector field ¢ is
Hopf.

In particular, the second author [8] gave a characterization of type B among
Hopf hypersurfaces in Go(C™%2) when the almost contact 3-structure tensors
{¢1, P2, ¢3 } commute with the shape operator A on the orthogonal comple-
ment of the one dimensional distribution [£]. Moreover, he also gave another
characterization of real hypersurfaces of type B in Go(C™"2) in terms of con-
tact hypersurface, that is, A¢ + ¢A = k¢, where k is non-zero constant (See

[9])-
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On the other hand, it can be easily seen that the Reeb vector ¢ for real
hypersurfaces of type B in Theorem A belongs to the distribution ® (See [2]).
Then naturally we are able to consider a converse problem. It should be an
interesting problem to check that whether a real hypersurface of type B, that
is, a tube around a totally geodesic QP", m = 2n, in G(C™*?), is only a
hypersurface with its Reeb vector & belonging to the distribution .

From such a view point, we affirmatively answer for this problem. In this pa-
per we give a new characterization of real hypersurfaces of type B in G (C™*2)
as follows:

Main Theorem. Let M be a connected orientable Hopf real hypersurface in
Go(C™*2), m>3. Then the Reeb vector & belongs to the distribution ® if and
only if M is locally congruent to an open part of a tube around a totally geodesic
QP™ in Go(C™*+2), where m = 2n.

1. Riemannian geometry of G2 (C™12)

In this section we summarize basic material about Go(C™*+2), for details we
refer to [1], [3] and [4]. By G2(C™*?) we denote the set of all complex two-
dimensional linear subspaces in C™*2. The special unitary group G' = SU(m+
2) acts transitively on Go(C™%2) with stabilizer isomorphic to K = S(U(2) x
U(m)) C G. Then G5(C™*2) can be identified with the homogeneous space
G /K, which we equip with the unique analytic structure for which the natural
action of G on G(C™%2) becomes analytic. Denote by g and € the Lie algebra
of G and K, respectively, and by m the orthogonal complement of ¢ in g with
respect to the Cartan-Killing form B of g. Then g = ¢dm is an Ad(K)-invariant
reductive decomposition of g. We put o = eK and identify T,G2(C™*2) with
m in the usual manner. Since B is negative definite on g, its negative restricted
to m x m yields a positive definite inner product on m. By Ad(K)-invariance of
B this inner product can be extended to a G-invariant Riemannian metric g on
G2(C™*+2). In this way Go(C™%2) becomes a Riemannian homogeneous space,
even a Riemannian symmetric space. For computational reasons we normalize
g such that the maximal sectional curvature of (Go(C™%2), g) is eight.

When m = 1, Go(C?) is isometric to the two-dimensional complex projective
space CP? with constant holomorphic sectional curvature eight. When m = 2,
we note that the isomorphism Spin(6) ~ SU(4) yields an isometry between
G2(C*) and the real Grassmann manifold G5 (R®) of oriented two-dimensional
linear subspaces of RS. In this paper, we will assume m>3.

The Lie algebra £ has the direct sum decomposition, that is, a Cartan de-
composition

t = su(m) ® su(2) & R,
where R denotes the center of .. Viewing £ as the holonomy algebra of
G2(C™*2), the center R induces a Kéhler structure J and the su(2)-part a
quaternionic Kéahler structure J on GQ(C’”+2). If J, is any almost Hermitian
structure in J, then JJ, = J,J, and JJ, is a symmetric endomorphism with
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(JJ,)? = I and tr(JJ,) = 0. This fact will be used frequently throughout this
paper.

A canonical local basis Ji, Jo, J3 of J consists of three local almost Hermit-
ian structures J, in J such that J,J,+1 = Jy42 = —Jy41J,, where the index
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection V of (Go(C™%2), g), there exist for any canonical local basis .J;, J2, J3
of J three local one-forms q1, g2, g3 such that

(11) vXJV = QV+2(X)J1/+1 - qu+1(X)Ju+2

for all vector fields X on Go(C™*2).

Let p € G2(C™*2) and W a subspace of T,G2(C™"2). We say that W
is a quaternionic subspace of T,G2(C™*2) if JW C W for all J € J,. And
we say that W is a totally complex subspace of T,Ga(C™2) if there exists
a one-dimensional subspace U of J, such that JW C W for all J € U and
JW L W for all J € U+ Jp- Here, the orthogonal complement of U in J,
is taken with respect to the bundle metric and orientation on J for which any
local oriented orthonormal frame field of J is a canonical local basis of J. A
quaternionic (resp. totally complex) submanifold of G2 (C™*2) is a submanifold
all of whose tangent spaces are quaternionic (resp. totally complex) subspaces
of the corresponding tangent spaces of Ga(C™+2).

The Riemannian curvature tensor R of G5(C™%?) is locally given by

R(X,YV)Z = g(Y,2)X — g(X,2)Y + g(JY, Z)JX
—9(JX,2)JY —29(JX,Y)JZ

3
(1.2) + Y {9(LY, 2) X = g(J, X, 2)],Y —29(J,X,Y) ], Z}

v=1

3
+ Z{g(JyJY, ), JX —g(J,JX,Z)],JY},

v=1

where Ji, Jo, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G5 (C™12)

In this section we derive some fundamental formulae which will be used in
the proof of our main theorem. Let M be a real hypersurface of Go(C™+2),
that is, a hypersurface of G5(C™%2) with real codimension one. The induced
Riemannian metric on M will also be denoted by g, and V denotes the Rie-
mannian connection of (M, g). Let N be a local unit normal field of M and A
the shape operator of M with respect to V.

The Kihler structure .J of Go(C™*2) induces on M an almost contact metric
structure (¢,&,m,g9). More explicitly, we can define a tensor field ¢ of type
(1,1), a vector field ¢ and its dual 1-form n on M by g(¢X,Y) = g(JX,Y)
and (X)) = g(&, X) for any tangent vector fields X and Y on M. Then they
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satisfy the following

(2.1) P*X = =X +n(X)E, € =0, n(¢X) =0and n(¢) =1

for any tangent vector field X.

Furthermore, let Jp,.Js,J3 be a canonical local basis of J. Then each J,
induces an almost contact metric structure (¢,,&,,7,,9) on M in such a way
that a tensor field ¢, of type (1,1), a vector field &, and its dual 1-form 7, on
M defined by ¢g(¢,X,Y) = ¢g(J,X,Y) and 7, (X) = g(§,, X) for any tangent
vector fields X and Y on M. Then they also satisfy the following

(2'2) ¢ZX =X+ nu(X)fuv ®ué =0, 771/(¢1/X) =0 and 77V(§V) =1

for any vector field X tangent to M and v = 1,2, 3. B
Using the above expression (1.2) for the curvature tensor R, the equations
of Gauss and Codazzi are respectively given by

+ 9(¢Y, 2)pX — g(¢X, Z)pY — 29(¢X,Y )92

+ Z A9(0Y. 2)0u X — 9(6X, 2)0Y — 29(6,X,Y ), Z}
+ Z 9($u8Y, Z) X — g(600X, Z)$, ¢V }
- Z (2)$dX — (X ), (Z)$u¢Y }

—Z 9($ Y, Z) = n(Y)g(6,6X, Z)} &,
+g(AY, Z)AX g(AX, Z)AY ,

and
(VxA)Y — (Vy A)X =n(X )¢>Y —n(Y)$X —29(¢X,Y)E

+ Z (n(X)6,Y — n,(Y)$,X —29(6,X,Y)E, }
+ Z (1(6X)0u0Y — 1, (Y ), 6X }

+Z{n Y (6Y) = n(Y ), (6X) Yo

where R denotes the curvature tensor of a real hypersurface M in G5 (C™*2).
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The following identities can be proved in a straightforward method and will
be used frequently in subsequent calculations (See [8] and [9]):

Gv1& = —Evr2, o1 = Sut2,
& = ¢u&, Mm(PX) =n(dX),
v 1 X = GuiaX + 11 (X)Ey,
Pvr100 X = =2 X + 1 (X)Ept1.

Now let us note that

JX =¢X +n(X)N, JN =-¢,

(2.3)

and
JVXZ¢VX+77V(X)N7 JVN:_gua V:17273
for any tangent vector X of a real hypersurface M in G3(C™*?), where N

denotes a normal vector of M in Go(C™*2). Then from these and the formulae
(1.1) and (2.3) we have that

(2.4) (Vxo)Y =n(Y)AX — g(AX,Y)§, Vx§=9AX,

(2.5) Vx& = qui2(X)&s1 — qui1(X)Ey2 + 0, AX,

(2.6) (Vxo,)Y = — qui1(X)pvi2Y + quia(X)dp1Y + 1, (Y)AX
. - g(AXa Y)fu

Summing up these formulae, we find the following
Vx(9u€) = Vx(9&0)
= (Vxo)& + d(Vx&y)
= Gu+2(X)Pv4+1€ — Qut1(X)Pu128 + drpAX
—9(AX, & +n()AX.
Moreover, from JJ, = J,J, v =1, 2,3, it follows that

(2'8> ¢¢VX = ¢V¢X + nV(X>€ - 77(X>§u-

On the other hand, using the fact, A¢ = a&, Berndt and the second author
gave the following lemma (See [4]):

(2.7)

Lemma 2.1. If M is a connected orientable Hopf real hypersurface in Go(C™+2),
then

ag((Ag + ¢A)X.Y) — 29(ApAX.Y) + 29(¢ X, Y)

(2.9) = 22 A (X0 (@Y ) = 1 (Y )1 (6X) — g(60. X, Y )i (€)
— 20X, (6Y )0, (€) + 20(Y )1 (6X ), (6)}

for all vector fields X andY on M.
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3. Proof of Main Theorem

Let M be a connected orientable Hopf real hypersurface in Go(C™%2). Now
let us denote by the distribution ® the orthogonal complement of the distribu-
tion D+ = Span{ &, &, &3} such that T,M = D @ D+ for any point z € M.

In order to prove our Main Theorem in the introduction we give a key
proposition as follows:

Proposition 3.1. Let M be a connected orientable Hopf real hypersurface in
G2(C™*+2). If the Reeb vector & belongs to the distribution ®, then the distribu-
tion ® is invariant under the shape operator A of M, that is, g(AD,D+) = 0.

Proof. To prove this it suffices to show that g(AD,&,) =0, v =1,2,3. In order
to do this, we put
D =[] @ [91€, $26, ¢3€ ] @ Do,

where the distribution ®g is an orthogonal complement of [£] D[ 1€, P&, d3&]
in the distribution ® of the tangent space T, M, z€M, of M in Go(C™*+?).
First, from the assumption £€® we know g(AE,&,) =0, v = 1,2, 3, because we
have assumed that M is Hopf. Next we assert the formula g(A¢;€,&,) = 0 for
i, v =1,2,3. In fact, by using (2.5) and £€® we have the following:

9(A9:i&, &) = —9(9A&. &)
= —g(véu £,&i)
=9(& Ve, &)
= 9(& qir2(&0)&it1 — qir1(&)iva + i ALL)
=g(&, i AE,)
= —g(A¢i&, &),

which gives our assertion (See [6], page 1127). Finally, we consider for the case
X € ®p. From (2.9) in above Lemma 2.1, we have

aApX + apAX — 2ApAX + 20X
3
=23 { - m(X)0t — m(6X)6 — 1, (€)6, X
v=1

+ 20(X)10(€)60€ + 200 (6X)mu (€€ |

for any tangent vector field X € T,M, xeM. From now on, we show that
g(AX, &) = 0 for any X € Dg. In order to do this, we restrict X € T, M,
r€M to X € D¢ unless otherwise stated. Now by taking ¢ into above equation
and using the fact A = o€ we get
(3.1) apAPX — aAX — 20ApAX —2X =0
for any X € ®g.

Taking inner product in (3.1) with &, we have

ag(pAdX, &) — ag(AX, &) — 29(pAPAX, ) = 0,
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that is,
(32)  ag(AX,&,) = ag(9pAdX, £,) — 20($ASAX,E,) for X € Dq.

On the other hand, since g(¢pApX,E,) = 9(Vex&, &) = —9(&, Vex&,), we
have

9(PAPX, &) = —g(&, 9pAPX) = —g(§, pAGX)
by virtue of (2.3) and (2.5). Accordingly, we get
9(PAPX, &) =0

for any X € ®g.

Next let us show that g(¢ApAX,E,) =0 for any XeDy.

In fact, (2.4) and (2.5) give

9(PAPAX, ) = g(Vpax§, &) = —9(&, Vpaxéu)
= —9(§, uAPAX) = —g(§u, PAPAX),

which gives our assertion. Thus, from (3.2) we know that
(3.3) ag(AX,¢,) =0 for any X € Dy.

Then we are able to divide two cases as follows:

Casel. a#0

From (3.3) the conclusion is obvious.

Case 2. a=0

From an assumption, o = 0, together with (3.1), we have

X = —pApAX for any X € Dy.
From this, let us apply the shape operator A. Then it follows that

(3.4) AX = —ApAPpAX for any X € Dy.
Taking an inner product of (3.4) and &, we have
(3.5) 9(AX &) = —g(ApAPAX,E,) for any X € D.

On the other hand, we know the following

9(APAPAX ) = —g(APAX, 9AE,) = —g(APAX, Ve, ).
Then it follows that
9(AQAPAX, ) = —g(APAX, Ve, &)
= 9((Ve, A)pAX, §) + g(A(Ve, 0)AX,€)
+9(Ap(Ve, A) X, €) + g(APA(Ve, X)), €),
where we have used g(A¢pAX,&) = 0. From this, together with A = 0, it
follows that
(3.6) J(ADASAX.€,) = g((Ve, A)PAX, ).
On the other hand, by using the equation of Codazzi in Section 2, we have the
following:
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Lemma 3.2. g((Ve, A)$AX, &) = —g(AE,, ASAX) — 4g(AX, E,).
Proof. By the Codazzi equation we know

(Ve, A)PAX = (Voax A)&u + 1(6u)0° AX — n(dAX) &, — 29(6&,, pAX)E

3
+ 3 {660 0AX — 0y (9AX) D8, — 29(66, GAX ), }
v=1
3
+ 3 {m(66)6,6° AX — 1, (6*AX) D06, }
v=1

+ 3 {n€nn (2AX) = n(6AX ), (6,) oo

3
= (Voax A& — 29(6, AX)E + 00 AX + Y g(6€,, AX)

v=1

3 3
+2) 9(60u&u, AX)E + > 0y (AX) 08,
v=1 v=1

From this, taking an inner product with £ and using the fact that ¢¢,& = =&,
we have

9((Ve, A)pAX, &) = 9((Voax A)u, €) = 29(E, AX) + 9(9u0AX, €)

3 3
+ D 9(66, AX) (606, ) +2 Y g(¢duEu, AX)g(6,€)

v=1 v=1

3
+ 3 (AX)g(6,06,. ©)

v=1

= 9((Voax A, &) — 49(AX, &)
On the other hand, since g(A¢&,, &) = g(&u, AE) = ag(&,,€) and o = 0, we have
9(Voax A, &) = —9(A(Vpaxéu), §) — 9(AL,, 9APAX)
= _ag(v(zﬁAXfNa 5) - g(AglM ¢A¢AX)
Therefore we have
9((Ve, A)PAX, ) = —g(Ay, 9APAX) — 4g9(AX, &)
for any X € 9. ([

Consequently, from (3.6), Lemma 3.2, the symmetry of the shape operator
A, and together with the fact that A¢ = 0, we get

(3.7) 9(APAPAX,E,) = —29(AX, E,).



560 HYUNJIN LEE AND YOUNG JIN SUH

From (3.5) and (3.7) for a = 0, we have g(AX,¢,) = 0 for any tangent vector
field X belongs to the distribution 9.

Then summing up all situation mentioned above we conclude that the dis-
tribution @ is invariant under the shape operator of M if the Reeb vector &
belong to the distribution 2. O

Then by Proposition 3.1 and Theorem A we know that a Hopf real hyper-
surface M in Go(C™*2) with the Reeb vector & belongs to the distribution ® is
congruent to a tube over a totally geodesic Go(C™*1) in Go(C™*2) or a tube
over a totally geodesic QP", m = 2n, in G2(C™*1). But in [3] it was known
that the Reeb vector £ of type A in the first case belongs to the distribution
DL, From this we complete the proof of our main theorem in the introduction.
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