• Title/Summary/Keyword: Hyperbolic

Search Result 1,013, Processing Time 0.03 seconds

ASYMPTOTIC PROPERTIES OF THE HYPERBOLIC METRIC ON THE SPHERE WITH THREE CONICAL SINGULARITIES

  • Zhang, Tanran
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1485-1502
    • /
    • 2014
  • The explicit formula for the hyperbolic metric ${\lambda}_{{\alpha},{\beta},{\gamma}}(z){\mid}dz{\mid}$ on the thrice-punctured sphere $\mathbb{P}{\backslash}\{0,1,{\infty}\}$ with singularities of order 0 < ${\alpha}$, ${\beta}$ < 1, ${\gamma}{\leq}1$, ${\alpha}+{\beta}+{\gamma}$ > 2 at 0, 1, ${\infty}$ was given by Kraus, Roth and Sugawa in [9]. In this article we investigate the asymptotic properties of the higher order derivatives of ${\lambda}_{{\alpha},{\beta},{\gamma}}(z)$ near the origin and give more precise descriptions for the asymptotic behavior of ${\lambda}_{{\alpha},{\beta},{\gamma}}(z)$.

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1311-1332
    • /
    • 2013
  • This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

C1-STABLE INVERSE SHADOWING CHAIN COMPONENTS FOR GENERIC DIFFEOMORPHISMS

  • Lee, Man-Seob
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.127-144
    • /
    • 2009
  • Let f be a diffeomorphism of a compact $C^{\infty}$ manifold, and let p be a hyperbolic periodic point of f. In this paper we introduce the notion of $C^1$-stable inverse shadowing for a closed f-invariant set, and prove that (i) the chain recurrent set $\cal{R}(f)$ of f has $C^1$-stable inverse shadowing property if and only if f satisfies both Axiom A and no-cycle condition, (ii) $C^1$-generically, the chain component $C_f(p)$ of f associated to p is hyperbolic if and only if $C_f(p)$ has the $C^1$-stable inverse shadowing property.

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

A Study on the Position Accuracy Improvement Applying the Rectangular Navigation in the Hyperbolic Navigation System Area. (쌍곡선항법시스템을 이용한 직각항법에 의한 측위정도 향상에 관한 연구)

  • 김우숙;김동일;정세모
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1989
  • Nowadays Hyperbolic Navigation System-LORAN, DECCA, OMEGA, OMEGA-is available on the ocean, and Spherical Navigation System, GPS (Global Positioning System) is operated partially. Hyperbolic Navigation System has the blind area near the base line extention because divergence rate of hyperbola is infinite theoretically. The Position Accuracy is differ from the cross angle of LOP although each LOP has the same error of quantity. GDOP(Geometric Dilution of Precisoin) is used to estimate the position accuracy according to the cross angle of LOP and LOP error. Hyperbola and ellipse are crossed at right angle everywhere. Hyperbola and ellipse are used to LOP in Rectangular Navigation System. The equation calculating the GDOP of rectangular Navigation System is induced and GDOP diagram is completed in this paper. A scheme that can improve the position accuracy in the blind area of Hyperboic Navigation System using the Rectangular Navigation System is proposed through the computer simulation.

  • PDF

Numerical method of hyperbolic heat conduction equation with wave nature (파동특성을 갖는 쌍곡선형 열전도방정식에 관한 수치해법)

  • 조창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.670-679
    • /
    • 1998
  • The solution of hyperbolic equation with wave nature has sharp discontinuties in the medium at the wave front. Difficulties encounted in the numrtical solution of such problem in clude among oth-ers numerical oscillation and the representation of sharp discontinuities with good resolution at the wave front. In this work inviscid Burgers equation and modified heat conduction equation is intro-duced as hyperboic equation. These equations are caculated by numerical methods(explicit method MacCormack method Total Variation Diminishing(TVD) method) along various Courant numbers and numerical solutions are compared with the exact analytic solution. For inviscid Burgers equa-tion TVD method remains stable and produces high resolution at sharp wave front but for modified heat Conduction equation MacCormack method is recommmanded as numerical technique.

  • PDF

Decomposition of Reflecting Waves by Hyperbolic Model (쌍곡선형 모델에 의한 반사파 성분 분해)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.197-203
    • /
    • 1998
  • An approach of decomposing the reflecting components is proposed by using the mild-slope equation of hyperbolic type which has the similar form to the shallow water equations. The approach is verified on Booij's problem and sinusoidally varying ripples. Inclusion of higher-order bottom effect given by chamberlain and Porter(1995) yields even more satisfactory results than the Berkhoff's mild-slope equation when compared with finite element solution or experiments.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Final Settlement Prediction Methods of Embankments on Soft Clay

  • Lee, Dal-Won;Lim, Seong-Hun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.68-77
    • /
    • 2000
  • Analyses, in which load was regarded as instant load and gradual step load, respectively, were performed with data measured on a gradually loaded field, and the results were inspected to find the effect of load conditions, and the final settlements which were predicted by Hyperbolic, Tan's, Asaoka's, and Monden's methods were compared with each other. Settlement curves in which load was regarded as instant load and gradual step load being to coincide at twice the time of duration of embankment. On the ground installed vertical drain, from the results of Hyperbolic, Tan's, Asaoka's, Monden's, Curve fitting I, and Curve fitting II (simple, carrillo) methods it was concluded that Asaoka, Curve fitting I, and Curve fitting II methods are reliable for prediction final settlement with back analysis.

  • PDF

Real Hypersurfaces with Invariant Normal Jacobi Operator in the Complex Hyperbolic Quadric

  • Jeong, Imsoon;Kim, Gyu Jong
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.551-570
    • /
    • 2020
  • We introduce the notion of Lie invariant normal Jacobi operators for real hypersurfaces in the complex hyperbolic quadric Qm∗ = SOom,2/SOmSO2. The invariant normal Jacobi operator implies that the unit normal vector field N becomes 𝕬-principal or 𝕬-isotropic. Then in each case, we give a complete classification of real hypersurfaces in Qm∗ = SOom,2/SOmSO2 with Lie invariant normal Jacobi operators.