References
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Dover, New York, 1964.
- G. D. Anderson, T. Sugawa, M. K. Vamanamurthy, and M. Vuorinen, Hypergeometric functions and hyperbolic metric, Comput. Methods Funct. Theory 9 (2009), no. 1, 269-284. https://doi.org/10.1007/BF03321727
- B. T. Gill and T. H. MacGregor, Derivatives of the hyperbolic density near an isolated boundary point, Rocky Mountain J. Math. 36 (2006), no. 6, 1873-1884. https://doi.org/10.1216/rmjm/1181069350
- M. Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1-60. https://doi.org/10.1017/S002776300002376X
- D. Kraus and O. Roth, Conformal metrics, Ramanujan Math. Society, Lecture Notes Series 19 (2013), 41-83.
- D. Kraus and O. Roth, On the isolated singularities of the solutions of the Gaussian curvature equation for nonnegative curvature, J. Math. Anal. Appl. 345 (2008), no. 2, 628-631. https://doi.org/10.1016/j.jmaa.2008.04.052
- D. Kraus and O. Roth, The behaviour of solutions of the Gaussian curvature equation near an isolated boundary point, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 3, 643-667. https://doi.org/10.1017/S0305004108001618
- D. Kraus, O. Roth, and St. Ruscheweyh, A boundary version of Ahlfors' lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps, J. Anal. Math. 101 (2007), 219-256. https://doi.org/10.1007/s11854-007-0009-x
- D. Kraus, O. Roth, and T. Sugawa, Metrics with conical singularities on the sphere and sharp extensions of the theorems of Landau and Schottky, Math. Z. 267 (2011), no. 3-4, 851-868. https://doi.org/10.1007/s00209-009-0649-x
- D. Minda, The density of the hyperbolic metric near an isolated boundary point, Com-plex Variables Theory Appl. 32 (1997), no. 4 331-340. https://doi.org/10.1080/17476939708814999
-
J. Nitsche, Uber die isolierten Singularitaten der Losungen von
${\Delta}u=e^u$ , Math. Z. 68 (1957), 316-324. https://doi.org/10.1007/BF01160351 -
E. Picard, De l'integration de l'equation differentielles
${\Delta}u=e^u$ sur une surface de Riemann fermee, J. Reine Angew. Math. 130 (1905), 243-258. - M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), no. 2, 793-821. https://doi.org/10.1090/S0002-9947-1991-1005085-9
- S. T. Yau, A general Schwarz lemma for Kahler manifolds, Amer. J. Math. 100 (1978), no. 1, 197-203. https://doi.org/10.2307/2373880
- T. Zhang, Variants of Ahlfors' lemma and properties of the logarithmic potentials, In-teractions between real and complex analysis, 33-47, Sci. Technics Publ. House, Hanoi, 2012.
- T. Zhang, A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities, (submitted) arXiv: 1304.2004 [math.CV].