References
-
F. Abdenur and L. J. Díaz, Pseodo-orbit shadowing in the
$C^1$ -topology, Discrete Contin. Dyn. Syst. 17 (2007), 223–245. -
C. Bonatti and S. Crovisier, R
$\acute{e}$ currence et g$\acute{e}n\acute{e}ricit\acute{e}$ , Invent. Math. 158 (2004), 33–104. - R. Corless and S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), 409–423. https://doi.org/10.1006/jmaa.1995.1027
- J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308. https://doi.org/10.2307/1995906
-
S. Hayashi, Diffeomorphisms in
$F^1$ -(M) satisfy Axiom A, Ergod. Th. & Dynam. Sys. 12 (1992), 233–253. - M. Hurley, Bifurcations and chain recurrence, Ergodic Theory & Dynam. Sys. 3 (1983), 231–240.
- K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), 15–26. https://doi.org/10.1017/S0004972700033487
-
K. Lee and M. Lee, Hyperbolicity of
$C^1$ -stably expansive homoclinic classes, to apear Discrete Contin. Dyn Syst. -
K. Lee, K. Moriyasu, and K. Sakai,
$C^1$ -stable shadowing diffeomorphisms, Discrete Contin. Dyn. Syst. 22 (2008), 683–697. - R. Mane, An ergodic closing lemma, Ann of Math. 116 (1982), 503–540. https://doi.org/10.2307/2007021
- J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics 35, Cambridge University Press, 1993.
- S. Pilyugin, Inverse shadowing by continuous methods, Discrete Contin. Dyn. Syst. 8 (2002), 29–38. https://doi.org/10.3934/dcds.2002.8.29
- S. Pilyugin, A. A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dyn. Syst. 9 (2003), 287–308. https://doi.org/10.3934/dcds.2003.9.287
- C. Robinson, Dynamical Systems: stability, symbolic dynamics, and chaos (2-nd Ed.): Studies in Advanced Mathematics, CRC Press 1999.
- K. Sakai, Quasi-Anosov diffeomorphisms and pseudo-orbit tracing property, Nagoya Math. J. 111 (1988), 111–114.
-
K. Sakai,
$C^1$ -stably shadowable chain components, Ergod. Th. & Dynam. Sys. 28 (2008), 987–1029.
Cited by
- Stably average shadowable homoclinic classes vol.74, pp.2, 2011, https://doi.org/10.1016/j.na.2010.09.027