References
- J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math., 24(7)(2013), 1350050, 18 pp.
- A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 2008.
- S. Helgason, Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society, 2001.
- I. Jeong, H. J. Kim and Y. J. Suh, Real hypersurfaces in complex two-plane Grassman-nians with parallel normal Jacobi operator, Publ. Math. Debrecen., 76(1-2)(2010), 203-218.
- M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc., 296(1)(1986), 137-149. https://doi.org/10.1090/S0002-9947-1986-0837803-2
- M. Kimura, Some real hypersurfaces of a complex projective space, Saitama Math. J., 5(1987), 1-5.
- S. Klein, Totally geodesic submanifolds of the complex quadric, Differential Geom. Appl., 26(1)(2008), 79-96. https://doi.org/10.1016/j.difgeo.2007.11.004
- S. Klein, Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians, Trans. Amer. Math. Soc., 361(9)(2009), 4927-4967. https://doi.org/10.1090/S0002-9947-09-04699-6
- S. Klein and Y. J. Suh, Contact real hypersurfaces in the complex hyperbolic quadric, Ann. Mat. Pura Appl., 198(4)(2019), 1481-1494 https://doi.org/10.1007/s10231-019-00827-y
- A. W. Knapp, Lie Groups beyond an introduction, Second edition, Progress in Mathematics 140, Birkhauser, 2002.
- S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, A Wiley-Interscience Publication, Wiley Classics Library Ed., 1996.
- S. Montiel and A. Romero, Complex Einstein hypersurfaces of indefinite complex space forms, Math. Proc. Cambridge Philos. Soc., 94(3)(1983), 495-508. https://doi.org/10.1017/S0305004100000888
- J. D. Perez, Commutativity of Cho and structure Jacobi operators of a real hypersur-face in a complex projective space, Ann. Mat. Pura Appl., 194(6)(2015), 1781-1794. https://doi.org/10.1007/s10231-014-0444-0
-
J. D. Perez and Y. J. Suh, Real hypersurfaces of quaternionic projective space satisfying
${\nabla}_U_iR=0$ , Differential Geom. Appl., 7(3)(1997), 211-217. https://doi.org/10.1016/S0926-2245(97)00003-X - J. D. Perez and Y. J. Suh, Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective spaces, Acta Math. Hungar., 91(4)(2001), 343-356. https://doi.org/10.1023/A:1010676103922
- H. Reckziegel, On the geometry of the complex quadric, Geometry and Topology of Submanifolds VIII(Brussels/Nordfjordeid 1995), 302-315, World Sci. Publ., River Edge, NJ, 1996.
- A. Romero, Some examples of indefinite complete complex Einstein hypersurfaces not locally symmetric, Proc. Amer. Math. Soc., 98(2)(1986), 283-286. https://doi.org/10.1090/S0002-9939-1986-0854034-6
- A. Romero, On a certain class of complex Einstein hypersurfaces in indefinite complex space forms, Math. Z., 192(4)(1986), 627-635. https://doi.org/10.1007/BF01162709
- B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math., 85(1967), 246-266. https://doi.org/10.2307/1970441
- B. Smyth, Homogeneous complex hypersurfaces, J. Math. Soc. Japan, 20(1968), 643-647. https://doi.org/10.2969/jmsj/02040643
- Y. J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians, Monatsh. Math., 147(4)(2006), 337-355. https://doi.org/10.1007/s00605-005-0329-9
- Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Riccitensor, Proc. Roy. Soc. Edinburgh Sect. A., 142(6)(2012), 1309-1324. https://doi.org/10.1017/S0308210510001472
- Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature, J. Math. Pures Appl., 100(1) (2013), 16-33. https://doi.org/10.1016/j.matpur.2012.10.010
- Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, Internat. J. Math., 25(6)(2014), 1450059, 17 pp.
- Y. J. Suh, Real hypersurfaces in the complex quadric with parallel Ricci tensor, Adv. Math., 281(2015), 886-905. https://doi.org/10.1016/j.aim.2015.05.012
- Y. J. Suh, Real hypersurfaces in the complex quadric with harmonic curvature, J. Math. Pures Appl., 106(3) (2016), 393-410. https://doi.org/10.1016/j.matpur.2016.02.015
- Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb Flow, Commun. Contemp. Math., 20(2)(2018), 1750031, 20 pp.
- Y. J. Suh, Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator, Mediterr. J. Math., 15(4)(2018), Paper No. 159, 14 pp. https://doi.org/10.1007/s00009-018-1202-0
- Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting Ricci tensor, Sci. China Math., 59(11)(2016), 2185-2198. https://doi.org/10.1007/s11425-016-0067-7
- Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator, Ann. Mat. Pura Appl., 196(4)(2017), 1307--1326. https://doi.org/10.1007/s10231-016-0617-0
- Y. J. Suh, J. D. Perez and C. Woo, Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator, Publ. Math. Debrecen, 94(1-2)(2019), 75-107. https://doi.org/10.5486/PMD.2019.8262