DOI QR코드

DOI QR Code

On Generalized Ricci Recurrent Spacetimes

  • Received : 2018.12.05
  • Accepted : 2020.03.25
  • Published : 2020.09.30

Abstract

The object of the present paper is to characterize generalized Ricci recurrent (GR4) spacetimes. Among others things, it is proved that a conformally flat GR4 spacetime is a perfect fluid spacetime. We also prove that a GR4 spacetime with a Codazzi type Ricci tensor is a generalized Robertson Walker spacetime with Einstein fiber. We further show that in a GR4 spacetime with constant scalar curvature the energy momentum tensor is semisymmetric. Further, we obtain several corollaries. Finally, we cite some examples which are sufficient to demonstrate that the GR4 spacetime is non-empty and a GR4 spacetime is not a trivial case.

Keywords

References

  1. L. Alias, A. Romero and M. Sanchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 27(1)(1995), 71-84. https://doi.org/10.1007/BF02105675
  2. L. Alias, A. Romero and M. Sanchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Geometry and Topology of submanifolds VII, 67-70, World Sci. Publ., River Edge, NJ, 1995.
  3. E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian manifolds of conullity two, World Sci. Publ., River Edge, NJ, 1996.
  4. M. Brozos-Vazquez, E. Garcia-Rio and R. Vaquez-Lorenzo, Some remarks on locally conformally flat static spacetimes, J. Math. Phys., 46(2005), 022501, 11 pp.
  5. H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Mon. Not. Roy. Astr. Soc., 150(1970), 1-8. https://doi.org/10.1093/mnras/150.1.1
  6. S. Capozziello, C. A. Mantica and L. G. Molinari, Cosmological perfect fluids in f(R) gravity, Int. J. Geom. Methods Mod. Phys, 16(2019), 1950008, 14 pp.
  7. M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys., 35(1996), 1027-1032. https://doi.org/10.1007/BF02302387
  8. B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 46(2014), Art. 1833, 5 pp.
  9. A. A. Coley, Fluid spacetimes admitting a conformal Killing vector parallel to the velocity vector, Class. Quantum Grav., 8(1991), 955-968. https://doi.org/10.1088/0264-9381/8/5/019
  10. U. C. De and A. K. Gazi, On generalized concircularly recurrent manifolds, Studia Sci. Math. Hungar., 46(2009), 287-296. https://doi.org/10.1556/SScMath.46.2009.2.1091
  11. U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.), 56(1995), 312-317.
  12. R. Deszcz, M. Glogowska, M. Hotlos and Z. Senturk, On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 41(1998), 151-164.
  13. R. Deszcz, M. Hotlos and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math., 89(1)(2001), 81-97. https://doi.org/10.4064/cm89-1-6
  14. A. De, C. Ozgur and U. C. De, On conformally at almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys., 51(9)(2012), 2878-2887. https://doi.org/10.1007/s10773-012-1164-0
  15. U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys., 54(6)(2015), 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
  16. K. L. Duggal and R. Sharma, Symmetries and spacetimes and Riemannian manifolds, Kluwer Academic Pub., Dordrecht, 1999.
  17. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7(1978), 259-280. https://doi.org/10.1007/BF00151525
  18. B. S. Guilfoyle and B. C. Nolan, Yang's gravitational theory, Gen. Relativity Gravitation, 30(3)(1998), 473-495. https://doi.org/10.1023/A:1018815027071
  19. S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London, 1973.
  20. D. Lovelok and H. Rund, Tensors, differential forms and variational principles, Dover Publ., 1989.
  21. S. Mallick, A. De and U. C. De, On generalized Ricci recurrent manifolds with applications to relativity, Proc. Nat. Acad. Sci. India Sect. A, 83(2013), 143-152. https://doi.org/10.1007/s40010-013-0065-9
  22. S. Mallick and U. C. De, Spacetimes admitting $W_2$-curvature tensor, Int. J. Geom. Methods Mod. Phys., 11(4)(2014), 1450030, 8 pp.
  23. S. Mallick, Y. J. Suh and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys., 57(6)(2016), 062501, 10 pp.
  24. C. A. Mantica and L. G. Molinari, A second-order identity for the Riemann tensor and applications, Colloq. Math., 122(1)(2011), 69-82. https://doi.org/10.4064/cm122-1-7
  25. C. A. Mantica and L. G. Molinari, Extended Derdzinski-Shen theorem for curvature tensor, Colloq. Math., 128(1)(2012), 1-6. https://doi.org/10.4064/cm128-1-1
  26. C. A. Mantica and L. G. Molinari, Riemann compatible tensors, Colloq. Math., 128(2)(2012), 197-210. https://doi.org/10.4064/cm128-2-5
  27. C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid spacetime to be a generalized Robertson-Walker spacetime, J. Math. Phys., 57(2)(2016), 022508, 6 pp.
  28. C. A. Mantica and Y. J. Suh, Conformally symmetric manifolds and quasi conformaly recurrent Riemannian manifolds, Balkan J. Geo. Appl., 16(2011), 66-77.
  29. C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys., 55(4)(2014), 042502, 12 pp.
  30. Y. Matsuyama, Compact Einstein Kahler submanifolds of a complex projective space, Balkan J. Geom. Appl., 14(2009), 40-45.
  31. V. A. Mirzoyan, Ricci semisymmetric submanifolds, in Russian, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23(1991), 29-66.
  32. B. O'Neill, Semi-Riemannian geometry with applications to the relativity, Academic Press, New York, 1983.
  33. E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc., 27(1952), 287-295. https://doi.org/10.1112/jlms/s1-27.3.287
  34. M. M. Postnikov, Geometry VI, Riemannian geometry, Encyclopaedia of Mathematical Sciences 91, Springer-Verlag, Berlin, 2001.
  35. M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativity Gravitation, 30(1998), 915-932. https://doi.org/10.1023/A:1026664209847
  36. M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields, J. Geom. Phys., 31(1999), 1-15. https://doi.org/10.1016/S0393-0440(98)00061-8
  37. R. Sharma, Proper conformal symmetries of spacetimes with divergence-free Weyl conformal tensor, J. Math. Phys., 34(1993), 3582-3587. https://doi.org/10.1063/1.530046
  38. L. C. Shepley and A. H. Taub, Spacetimes containing perfect fluids and having a vanishing conformal divergence, Comm. Math. Phys., 5(1967), 237-256. https://doi.org/10.1007/BF01646477
  39. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein's Field equations, Second Edition, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2003.
  40. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y ) ${\cdot}$ R = 0, I. The local version, J. Diff. Geom., 17(1982), 531-582. https://doi.org/10.4310/jdg/1214437486
  41. A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc., 52(1950), 36-64. https://doi.org/10.1112/plms/s2-52.1.36