References
- L. Alias, A. Romero and M. Sanchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 27(1)(1995), 71-84. https://doi.org/10.1007/BF02105675
- L. Alias, A. Romero and M. Sanchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Geometry and Topology of submanifolds VII, 67-70, World Sci. Publ., River Edge, NJ, 1995.
- E. Boeckx, O. Kowalski and L. Vanhecke, Riemannian manifolds of conullity two, World Sci. Publ., River Edge, NJ, 1996.
- M. Brozos-Vazquez, E. Garcia-Rio and R. Vaquez-Lorenzo, Some remarks on locally conformally flat static spacetimes, J. Math. Phys., 46(2005), 022501, 11 pp.
- H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, Mon. Not. Roy. Astr. Soc., 150(1970), 1-8. https://doi.org/10.1093/mnras/150.1.1
- S. Capozziello, C. A. Mantica and L. G. Molinari, Cosmological perfect fluids in f(R) gravity, Int. J. Geom. Methods Mod. Phys, 16(2019), 1950008, 14 pp.
- M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys., 35(1996), 1027-1032. https://doi.org/10.1007/BF02302387
- B.-Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativity Gravitation, 46(2014), Art. 1833, 5 pp.
- A. A. Coley, Fluid spacetimes admitting a conformal Killing vector parallel to the velocity vector, Class. Quantum Grav., 8(1991), 955-968. https://doi.org/10.1088/0264-9381/8/5/019
- U. C. De and A. K. Gazi, On generalized concircularly recurrent manifolds, Studia Sci. Math. Hungar., 46(2009), 287-296. https://doi.org/10.1556/SScMath.46.2009.2.1091
- U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.), 56(1995), 312-317.
- R. Deszcz, M. Glogowska, M. Hotlos and Z. Senturk, On certain quasi-Einstein semisymmetric hypersurfaces, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 41(1998), 151-164.
- R. Deszcz, M. Hotlos and Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math., 89(1)(2001), 81-97. https://doi.org/10.4064/cm89-1-6
- A. De, C. Ozgur and U. C. De, On conformally at almost pseudo-Ricci symmetric spacetimes, Internat. J. Theoret. Phys., 51(9)(2012), 2878-2887. https://doi.org/10.1007/s10773-012-1164-0
- U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys., 54(6)(2015), 1779-1783. https://doi.org/10.1007/s10773-014-2381-5
- K. L. Duggal and R. Sharma, Symmetries and spacetimes and Riemannian manifolds, Kluwer Academic Pub., Dordrecht, 1999.
- A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7(1978), 259-280. https://doi.org/10.1007/BF00151525
- B. S. Guilfoyle and B. C. Nolan, Yang's gravitational theory, Gen. Relativity Gravitation, 30(3)(1998), 473-495. https://doi.org/10.1023/A:1018815027071
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London, 1973.
- D. Lovelok and H. Rund, Tensors, differential forms and variational principles, Dover Publ., 1989.
- S. Mallick, A. De and U. C. De, On generalized Ricci recurrent manifolds with applications to relativity, Proc. Nat. Acad. Sci. India Sect. A, 83(2013), 143-152. https://doi.org/10.1007/s40010-013-0065-9
-
S. Mallick and U. C. De, Spacetimes admitting
$W_2$ -curvature tensor, Int. J. Geom. Methods Mod. Phys., 11(4)(2014), 1450030, 8 pp. - S. Mallick, Y. J. Suh and U. C. De, A spacetime with pseudo-projective curvature tensor, J. Math. Phys., 57(6)(2016), 062501, 10 pp.
- C. A. Mantica and L. G. Molinari, A second-order identity for the Riemann tensor and applications, Colloq. Math., 122(1)(2011), 69-82. https://doi.org/10.4064/cm122-1-7
- C. A. Mantica and L. G. Molinari, Extended Derdzinski-Shen theorem for curvature tensor, Colloq. Math., 128(1)(2012), 1-6. https://doi.org/10.4064/cm128-1-1
- C. A. Mantica and L. G. Molinari, Riemann compatible tensors, Colloq. Math., 128(2)(2012), 197-210. https://doi.org/10.4064/cm128-2-5
- C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid spacetime to be a generalized Robertson-Walker spacetime, J. Math. Phys., 57(2)(2016), 022508, 6 pp.
- C. A. Mantica and Y. J. Suh, Conformally symmetric manifolds and quasi conformaly recurrent Riemannian manifolds, Balkan J. Geo. Appl., 16(2011), 66-77.
- C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys., 55(4)(2014), 042502, 12 pp.
- Y. Matsuyama, Compact Einstein Kahler submanifolds of a complex projective space, Balkan J. Geom. Appl., 14(2009), 40-45.
- V. A. Mirzoyan, Ricci semisymmetric submanifolds, in Russian, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 23(1991), 29-66.
- B. O'Neill, Semi-Riemannian geometry with applications to the relativity, Academic Press, New York, 1983.
- E. M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc., 27(1952), 287-295. https://doi.org/10.1112/jlms/s1-27.3.287
- M. M. Postnikov, Geometry VI, Riemannian geometry, Encyclopaedia of Mathematical Sciences 91, Springer-Verlag, Berlin, 2001.
- M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativity Gravitation, 30(1998), 915-932. https://doi.org/10.1023/A:1026664209847
- M. Sanchez, On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields, J. Geom. Phys., 31(1999), 1-15. https://doi.org/10.1016/S0393-0440(98)00061-8
- R. Sharma, Proper conformal symmetries of spacetimes with divergence-free Weyl conformal tensor, J. Math. Phys., 34(1993), 3582-3587. https://doi.org/10.1063/1.530046
- L. C. Shepley and A. H. Taub, Spacetimes containing perfect fluids and having a vanishing conformal divergence, Comm. Math. Phys., 5(1967), 237-256. https://doi.org/10.1007/BF01646477
- H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact Solutions of Einstein's Field equations, Second Edition, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2003.
-
Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )
${\cdot}$ R = 0, I. The local version, J. Diff. Geom., 17(1982), 531-582. https://doi.org/10.4310/jdg/1214437486 - A. G. Walker, On Ruse's spaces of recurrent curvature, Proc. London Math. Soc., 52(1950), 36-64. https://doi.org/10.1112/plms/s2-52.1.36