• 제목/요약/키워드: Fractional derivative

검색결과 179건 처리시간 0.02초

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

Effect of fractional order on energy ratios at the boundary surface of elastic-piezothermoelastic media

  • Kumar, Rajneesh;Sharma, Poonam
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.157-174
    • /
    • 2017
  • In the present investigation reflection and transmission of plane waves at an elastic half space and piezothermoelastic solid half space with fractional order derivative is discussed. The piezothermoelastic solid half space is assumed to have 6 mm type symmetry and assumed to be loaded with an elastic half space. It is found that the amplitude ratios of various reflected and refracted waves are functions of angle of incidence, frequency of incident wave and are influenced by the piezothermoelastic properties of media. The expressions of amplitude ratios and energy ratios are obtained in closed form. The energy ratios are computed numerically using amplitude ratios for a particular model of graphite and Cadmium Selenide (CdSe). The variations of energy ratios with angle of incidence are shown graphically. The conservation of energy across the interface is verified. Some cases of interest are also deduced from the present investigation.

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.

EXISTENCE AND UNIQUENESS OF SQUARE-MEAN PSEUDO ALMOST AUTOMORPHIC SOLUTION FOR FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY G-BROWNIAN MOTION

  • A.D. NAGARGOJE;V.C. BORKAR;R.A. MUNESHWAR
    • Journal of applied mathematics & informatics
    • /
    • 제41권5호
    • /
    • pp.923-935
    • /
    • 2023
  • In this paper, we will discuss existence of solution of square-mean pseudo almost automorphic solution for fractional stochastic evolution equations driven by G-Brownian motion which is given as c0D𝛼𝜌 Ψ𝜌 = 𝒜(𝜌)Ψ𝜌d𝜌 + 𝚽(𝜌, Ψ𝜌)d𝜌 + ϒ(𝜌, Ψ𝜌)d ⟨ℵ⟩𝜌 + χ(𝜌, Ψ𝜌)dℵ𝜌, 𝜌 ∈ R. Furthermore, we also prove that solution of the above equation is unique by using Lipschitz conditions and Cauchy-Schwartz inequality. Moreover, examples demonstrate the validity of the obtained main result and we obtain the solution for an equation, and proved that this solution is unique.

ON THE DISTORTION THEOREMS I

  • Owa, Shigeyoshi
    • Kyungpook Mathematical Journal
    • /
    • 제18권1호
    • /
    • pp.53-59
    • /
    • 1978
  • The coefficient problems of univalent functions was given by Bieberbach. As is well-known, Koebe distortion theorem has close connection with the coefficient problems of univalent functions. It is purpose of this paper to give the distortion theorems for fractional integral and derivative of univalent functions.

  • PDF

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

점성 유체 감쇠기의 크기 변화에 따른 성능 변화 예측 (Prediction of the Ability of a Viscous Fluid Damper with Respect to Change of the Size of the Damper)

  • 박화용;윤종민;유성환;김창열;이재응
    • 한국소음진동공학회논문집
    • /
    • 제22권1호
    • /
    • pp.53-60
    • /
    • 2012
  • To reduce the vibration in industrial settings, the viscous fluid dampers have been widely used. Since the damper shows a viscoelastic behavior, many methods to predict the behavior have been investigated. But the methods did not consider a change of damper size that is important factor for practical design engineer. In this study, to predict a change of damper ability with respect to a change of damper size, the dynamic experiment were conducted with fixed aspect ratio and gap. The damping coefficient at zero frequency was computed through theoretical and experiment approach in order to fit the experimental results using fractional derivative Maxwell model.

Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models

  • Lewandowski, R.;Bartkowiak, A.;Maciejewski, H.
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.113-137
    • /
    • 2012
  • Frame structures with viscoelastic (VE) dampers mounted on them are considered in this paper. It is the aim of this paper to compare the dynamic characteristics of frame structures with VE dampers when the dampers are modelled by means of different models. The classical rheological models, the model with the fractional order derivative, and the complex modulus model are used. A relatively large structure with VE dampers is considered in order to make the results of comparison more representative. The formulae for dissipation energy are derived. The finite element method is used to derive the equations of motion of the structure with dampers and such equations are written in terms of both physical and state-space variables. The solution to motion equations in the frequency domain is given and the dynamic properties of the structure with VE dampers are determined as a solution to the appropriately defined eigenvalue problem. Several conclusions concerning the applicability of a family of models of VE dampers are formulated on the basis of results of an extensive numerical analysis.

A FINITE DIFFERENCE/FINITE VOLUME METHOD FOR SOLVING THE FRACTIONAL DIFFUSION WAVE EQUATION

  • Sun, Yinan;Zhang, Tie
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.553-569
    • /
    • 2021
  • In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.