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EXISTENCE AND CONTROLLABILITY OF IMPULSIVE
FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL

EQUATION WITH STATE DEPENDENT INFINITE DELAY
VIA SECTORIAL OPERATOR
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Abstract. In the article, we handle with the existence and controllability
results for fractional impulsive neutral functional integro-differential equa-
tion in Banach spaces. We have used advanced phase space definition for
infinite delay. State dependent infinite delay is the main motivation using
advanced version of phase space. The results are acquired using Schaefer’s
fixed point theorem. Examples are given to illustrate the theory.
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1. Introduction

The concept of semigroups of bounded linear operators is precisely asso-
ciated to solving differential and integro-differential equations in Banach spaces.
A little while back, this strategy has been utilized to a substantial type of non-
linear differential equations in Banach spaces. For more points of interest on
this concept, we refer Pazy [32]. The principle of fractional differential equation
(FDE) have selected up extensive vitality because of their use in numerous sci-
ences, including physical science, mechanics and engineering [8, 21]. The notion
of fractional derivatives, as is long familiar, has its commencement in an inquiry
postured amid a correspondence in the middle of Leibnitz and L’Höspital. The
five millennium extremely ancient inquiry has turned into a significant zone of
exploration. As of late, it has been demonstrated that the differential designs
including derivatives of fractional order emerge in numerous technological inno-
vations and scientific disciplines as the statistical modeling of frameworks and
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procedures in numerous fields like: physical science, chemical industry, aerody-
namics of complex medium, etc. For information, such as some uses and latest
outcomes, think about the treatise of Miller and Ross [29], Abbas et al. [1],
Baleanu et al. [9], Podlubny [33], Diethelm [18], Kilbas et al. [26], Tarasov [47],
and the papers [15, 3, 4, 6, 7, 25, 38, 39, 42, 43, 16], and the references cited
therein.

The concept of impulsive differential framework has been a target con-
sideration due to the fact of its extensive uses in physics, biology, engineering,
medicinal fields, industry and technology. Impulsive differential equations are
appropriate models for describing the real processes that deviate their states
rapidly at certain moments and cannot be described by using the classical dif-
ferential equations [14, 35, 37, 40, 41]. Integro-differential equations arise in the
mathematical modeling of several neutral phenomena and various investigations
led to the exploration of their different aspects, refer [30, 12].

Fractional differential equations (FDE) are recognized as an indispensable
tool to compile the dynamical behavior of real-life phenomena in a accurate man-
ner and can be described very successfully by models using mathematical tools
from the fractional calculus. Occurrence in purpose, the nonlinear oscillation of
earthquake can be effectively displayed with fractional derivatives. This includes
fluid flow, rheology, dynamical processes in self-similar and porous structure,
dielectric polarization, electrode-electrolyte polarization, electromagnetic wave,
electrical networks, traffic model with fractional derivative, control theory of
dynamical systems and so on. Many problems in engineering systems can be
resolved by incorporating fractional calculus (pl. refer to ([50, 6, 7, 17])). Frac-
tional equation with delay properties arise in several fields such as biological and
physical with state dependent delay (SDD) or non-constant delay. Nowadays,
existence results of mild solutions for such problems became very attractive and
several researchers are working on it. Recently, several papers have been written
on the fractional order problems with state dependent delay (SDD) [14] and the
sources therein. Currently, in existence and controllability of mild solutions for
such problems became very attractive.

State dependent delays are several places in application, such as 3D print-
ing and oil drilling. The formulation of the problem working with a control of
nonlinear systems with state dependent delay on the input can be studied by de-
signing “nonlinear predictor feedback” law that compensates the input delay. In
[11], the authors introduced the concept of nonlinear predictor feedback starting
from nonlinear systems with constant delays all the way through to predictor
feedback for nonlinear systems with state dependent delay.

The existence, controllability, and other qualitative and quantitative at-
tributes of differential and fractional differential equations (FDE) are the most
advancing area of interest (for instance, see [50, 7]). Recently, several authors
investigated the different types of impulsive fractional differential systems in Ba-
nach space under different fixed theorems with weak conditions.Controllability
plays a significant role in the evolution of modern mathematical control theory.
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This is a qualitative property of dynamical control systems and is of appropri-
ate significance in Control theory. It has many significant applications not only
in control theory and systems theory, but also in such fields as industrial and
chemical process control, reactor control, control of electric bulk power systems,
aerospace engineering and recently in quantum systems theory. To have effective
illustration one can refer to [48, 27, 45, 34, 36, 5].

However, existence results for impulsive fractional neutral integro differ-
ential equations (IFNIDE) with state dependent delay (SDD) in phase space
(Bh) adages have not yet been completely examined. In addition, Kailasavalli
et al. [28] acknowledged the existence and controllability of fractional neutral
integro-differential systems with state dependent delay, Banach Contraction and
resolvent operator technique as the main reference. Dabas et al. [19] studied
the existence, uniqueness and continuous dependence of mild solution for an
impulsive neutral fractional order differential equation with infinite time delay,
but not the state delay.

Motivated by the above works, we show that a particular class of impulsive
fractional neutral integrodifferential equation in Banach space is controllable
provided that some sufficient conditions are satisfied. The system considered
here is untreated in the literature, which is a main motivation of the current
work.

Inspired by the effort of the above stated papers, the primary inspira-
tion driving this manuscript is to research the existence of mild solution for an
IFNIDE with SDD of the model

CDq
t

[
x(t)− G (t, xϱ(t,xt))

]
= Ax(t) + F

[
t, xϱ(t,xt),

∫ t

0

W(t, s, xϱ(s,xs))ds
]
, t ∈ I ;

(1.1)
∆x|t=tk = Ik(x(tk)); k = 1, 2, ...m; (1.2)

x0 = ϕ ∈ Bh, t ∈ (−∞, 0]; (1.3)

where CDq
t denote the Caputo fractional derivative of order 0 < q < 1, t ∈ I =

[0, T ] with the lower limit zero, A is a fractional sectorial (unbounded) operator
on a Banach space X, having its norm recognized as ∥.∥X, G : I ×Bh → X, F :
I × Bh × X → X, W : D × Bh → X, ϱ : I × Bh → (−∞, T ] are appropriate
operators. Bh is a theoretical phase space adages outlined in preliminaries.
Here, D = {(t, s) ∈ I × I : 0 ≤ s ≤ t ≤ T}. Here, 0 = t0 < t1 < t2 < ... <
tm < tm+1 = T , Ik : X → X (k = 1, 2, . . . ,m) are impulsive functions which
portray the jump of the solutions at impulse points tk, ∆x|t=tk = x(t+k )− x(t−k )

with x(t+k ) , x(t−k ) representing the right and left limits of x at the points tk,
respectively. Consider the space

PC :=
{
x : (−∞, T ] → X such that x(t+k ) and x(t

−
k ) exist and x(tk) = x(t−k )

x(t) = ϕ(t) for t ∈ (−∞, T ], xk ∈ C(Ik,X), k = 1, 2, . . . ,m
}

.
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For almost any continuous function x characterized on (−∞, T ] and any
t ≥ 0, we designate by xt the part of Bh characterized by xt(θ) = x(t + θ) for
θ ≤ 0. Now, xt(.) speaks to the historical backdrop of the state from every
θ ∈ (−∞, 0], likely the current time t.

The purpose of this paper is to analyze this fascinating model (1.1)-(1.3).
In Section 2, we recollect some definitions, theorems and notations. In Section 3,
the existence results of mild solutions for the model (1.1)-(1.3) is discussed under
a suitable fixed point theorem. In Section 4, the controllability results of mild
solutions for the model (4.1)-(4.3) is discussed under the suitable conditions. As
a final part of the article we illustrate a couple of theoretical results.

2. Preliminaries

In this section, we recall some basic definition, notations and lemmas that are
used throughout this paper.

Let L(X) symbolize the Banach space of all bounded linear operator from
X into X, having its norm recognized as ∥.∥L(X).

Let C(I ,X) symbolize the space of all continuous functions from I into
X, having the norm recognized as ∥.∥C(I ,X).

We assume that A : D(A) → X be the infinitesimal generator of an analytic
semigroup {Rq(t)}t≥0. Without loss of simplification, we expect that 0 ∈ ρ(A).
Then it is possible to determine the fractional power Aα for 0 < α ≤ 1, as closed
linear operator on its domain D(Aα) being dense in X. For 0 < β ≤ α ≤ 1,
Xα → Xβ and the imbedding is compact whenever the resolvent operator of A
is compact. Also for every 0 < α ≤ 1, there exists Mα > 0 such that

∥AαRq(t)∥ ≤ Mα

tα
.

With this discussion, we recall fundamental properties of fractional power
Aα from Pazy [32].

It needs to be outlined that, once the delay is infinite, we need to talk
about the theoretical phase space Bh in a beneficial way. In this manuscript, we
deliberate phase space Bh which are same as described in [19]. So, we bypass
the details.

Now we define the abstract phase space Bh. Assume that W : (−∞, 0] →
(0,∞) be a continuous function with l =

∫ 0

−∞ W(s)ds < ∞. For any a > 0, we
define,

B =
{
ϕ : [−a, 0] → X such that ϕ(l) is bounded and measurable

}
,

and equip the space B with the norm∥∥ϕ∥∥
[−a,0]

= sups∈[−a,0]

∥∥∥ϕ(s)∥∥∥, ∀ ϕ ∈ B.

Let us define
Bh =

{
ϕ : (−∞, 0] → X such that, for any c > 0, ϕ|[−c,0] ∈ B
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and
∫ 0

−∞
W(s)

∥∥ϕ∥∥
[s,o]

ds <∞
}
.

If Bh is endowed with the norm∥∥ϕ∥∥Bh
=

∫ 0

−∞
W(s)

∥∥ϕ∥∥
[s,0]

ds, ∀ ϕ ∈ Bh,

then it is clear that (Bh, ∥.∥Bh
) is a Banach space.

Now we consider the space

B′
h =

{
x : (−∞, T ] → X such that x|I ∈ C(I ,X), x0 = ϕ ∈ Bh

}
.

Set ∥.∥b be a seminorm in B′
h defined by

∥x∥T = ∥ϕ∥Bh
+ sup{∥x(s)∥ : s ∈ [0, T ]}, x ∈ B′

h.

We assume that the phase space (Bh, ∥.∥Bh
) is semi-normed linear space of

functions mapping (−∞, 0] into X, and fulfilling the following elementary axioms
as a result of Hino et al. (see [23]).
(A) If x : (∞, T ] → X, T > 0 is continuous on I and x0 ∈ Bh, then for every
t ∈ I , the following conditions hold:

(P1) xt is in Bh;
(P2) ∥x(t)∥X ≤ H∥xt∥Bh

;
(P3) ∥xt∥Bh

≤ D1(t)sup{∥x(s)∥X : 0 ≤ s ≤ t} + D2(t)∥x0∥Bh
, where H > 0

is a constant and D1(.) : [0,∞) → [0,∞) is continuous, D2(.) : [0,∞) →
[0,∞) is locally bounded, and D1,D2 are independent of x(.).

(P4) The function t → ϕt is well described and continuous from the set:

R(ϱ−) = {ϱ(s, ψ) : (s, ψ) ∈ I × Bh}

into Bh, and there is a continuous and bounded function I ϕ : R(ϱ−) →
(0,∞) such that ∥ϕt∥Bh

≤ I ϕ(t)∥ϕ∥Bh
for every t ∈ R(ϱ−).

(A1) For the function x(.) in (A), xt is a Bh-valued continuous function on
[0, T ).

(A2) The space Bh is complete.
Here, we consider some examples of phase spaces.

Example 1. (The phase space Cr × Lp(g,X)) Let r ≥ 0, 1 ≤ p < ∞ and let
g : (−∞,−r] → R be a nonnegative measurable function which satisfies the
following conditions:
(g − 5) ∫ 0

χ

g(θ)dθ <∞, forall χ ∈ (−∞, 0)

(g − 6) There is a nonnegative function G, which is a locally bounded in (−∞, 0]
such that g(χ+ θ) ≤ G(χ)g(θ), ∀ χ ≤ 0 and θ ∈ (−∞,−r) \Nχ, where
Nχ ⊂ (−∞,−r) with Lebesgue measure zero.



156 K. Malar, R. Ilavarasi, D.N. Chalishajar

The space Bh = Cr ×Lp(g,X) consists of all classes of Lebesgue-measurable
functions ϕ : (−∞, 0] → X such that ϕ is continuous on [−r, 0] and g∥ϕ∥p is
Lebesgue integrable on (−∞,−r). The seminorm in this space is defined by

∥ϕ∥Bh
: = sup

{
∥ϕ(θ)∥ : −r ≤ θ ≤ 0

}
+

(∫ −r

−∞
g(θ)∥ϕ(θ)∥pdθ

) 1
p

.

Proceeding as in the proof of [ [23], Theorem 1.3.8], it follows that Bh is a
space that satisfies axioms (A), (A1), (B). Moreover, when r = 0 and p = 2, we

can take H = 1, D1(t) = G(−t) 1
2 and D2(t) = 1 +

( ∫ 0

−t
g(θ)dθ

) 1
2 for t ≥ 1.

For additional details concerning phase space, we refer the reader to [23].

Lemma 2.1. ([20]) Let x : (−∞, T ] → X be a function in a way that x0 =
ϕ, x|Ik

∈ C(Ik,X), and (P4) holds. Then
∥xs∥Bh

≤ (D∗
2 + Jϕ)∥ϕ∥Bh

+ D∗
1 sup{∥x(θ)∥X : θ ∈ [0,max{0, s}]}, s ∈ R(ρ−) ∪ I ,

where Jϕ = supt∈R(ρ−)J
ϕ(t), D∗

1 = sups∈[0,T]D1(s), D∗
2 = sups∈[0,T]D2(s).

Now, we provide some fundamental definitions and results of the fractional
calculus [33, 26] theory that are used further as an aspect of this manuscript.

Definition 2.2. The fractional integral of order γ with the lower limit zero for
a function f is defined by

Iγt f(t) =
1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)1−γ
ds, t > 0, γ > 0,

the right part is point wise defined on [0,∞), where Γ(.) is the gamma function.

Definition 2.3. The Riemann-Liouville derivative of order γ with the lower
limit zero for a function f ∈ L1(I ,X) is defined by

Dγ
t f(t) =

1

Γ(n− γ)

dn

dtn

∫ t

0

f(s)

(t− s)1−n+γ
ds, t > 0, n− 1 < γ < n.

Definition 2.4. The Caputo derivative of order γ for a function f ∈ L1(I ,X)
is defined by

CDγ
t f(t) = Dγ

t (f(t)− f(0)), t > 0, 0 < γ < 1.

Remark 2.1. To be able to determine mild solution of the model (1.1)-(1.3),
we require mild solution of the subsequent Cauchy problem:{

CDq
tx(t) = Ax(t) + f(t), t ∈ I ,

x(0) = x0 ∈ X.
(2.1)

The mild solution [13, 46] of the above Cauchy problem can be described by

x(t) = Rq(t)x0 +

∫ t

0

Sq(t− s)f(s)ds,
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where

Rq(t) =
1

2πi

∫
Γ

eτtτ q−1R(τ q,A)dτ, Sq(t) =
1

2πi

∫
Γ

eτtR(τ q,A)dτ,

for suitable path Γ, and f : I → X is continuous.

Definition 2.5. ([24]) An operator A is called a sectorial operator if there are
constants η ∈ [π2 , π], ρ ∈ R and M > 0, such that the following conditions are
satisfied:

(1) ν(A) ⊂
∑

η,ρ, and
(2) ∥R(λ,A)∥L(X) ≤ M

|λ−ρ| ,M > 0, λ ∈
∑

η,ρ,
where

∑
η,ρ = {λ ∈ C : λ ̸= ρ, |arg(λ− ρ)| < η}.

Sectorial operators are well studied in the literature. Since the spectrum of
a sectorial operator integral is unbounded, one has to integrate along infinite
lines (means the boundary of a sector). As a matter of fact, this is only possible
for a restricted collection of functions. Dealing with these functions requires
some sectors in the space. For a recent reference including several examples and
properties, we refer the reader to [24]. In this work, we will assume that the
operator A is sectorial of type ρ with 0 ≤ ρ0 < η0(0,

π
2 ]. In this case A is a

generator of a solution operator given by

Rq(t) =
1

2πi

∫
Γ

eτtτ q−1R(τ q,A)dτ,

Sq(t) =
1

2πi

∫
Γ

eτtR(τ q,A)dτ ;

where Γ is a suitable path lying on
∑

η,ρ.

Definition 2.6. [2] A family {Rq(t)}t≥0 is called a solution operator of the
Cauchy problem (2.1) if the following conditions are satisfied:

(i) Rq(t) is strongly continuous for t ≥ 0, and Rq(0) = I, where I is the
identity operator.

(ii) Rq(t)D(A) ⊂ D(A) and ARq(t)x = Rq(t)Ax for all x ∈ D(A) and
t ≥ 0.

(iii) Rq(t)x is a solution of (2.1) for all x ∈ D(A) and t ≥ 0.

Lemma 2.7. If A ∈ Aq(η0, ρ0) for some η0 ∈ (0, π2 ], and ρ0 ∈ R, then

∥Rq(t)∥L(X) ≤ M̂1, ∥Sq(t)∥L(X) ≤ M̂2t
q−1,

where
M̂1 = supt∈I ∥Rq(t)∥L(X), M̂2 = supt∈IMeρt(1 + t1−q),

where M = M(η, ρ) is a constant.

Definition 2.8. A function x : (−∞, T ] → X is a mild solution of the model
(1.1)-(1.3) if : x0 = ϕ ∈ Bh on (−∞, 0]; ∆x|t=tk = Ik(x(tk)), k = 1, 2, ...,m,
the constraint of x(.) to be interval Ik, k = 0, 1, 2, ...,m, is continuous equation
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and there exists x(.) ∈ L1(Ik,X), such that x(t) ∈ F (t, xϱ(t,xt)) a.e. t ∈ I and
x fulfills the subsequent integral equation:

x(t) =


Rq(t)

[
ϕ(0)− G (0, ϕ)

]
+ G (t, xϱ(t,xt))

+
∫ t

0
(t− s)q−1ASq(t− s)G (s, xϱ(s,xs))ds

+
∫ t

0
(t− s)q−1Sq(t− s)F

(
s, xϱ(s,xs),

∫ s

0
W(s, τ, xϱ(τ,xτ ))dτ

)
ds

+
∑m

k=1 Rq(t− tk)Ik(x(tk), t ∈ I ;

(2.2)

is satisfied, where Rq(.) and Sq(.) are called characteristic solution operators
and given by

Rq(t) =

∫ ∞

0

ψq(θ)Rq(t
qθ)dθ,

Sq(t) = q

∫ ∞

0

θψq(θ)Rq(t
qθ)dθ,

and for θ ∈ (0,∞),

ψq(θ) =
1

q
θ−1− 1

q ν(θ−
1
q ) ≥ 0,

ν(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nq−1Γ(nq + 1)

n!
sin(nπq).

Here, ψq is a probability density function defined on (0,∞), that is,

ψq(θ) ≥ 0, θ ∈ (0,∞) and

∫ ∞

0

ψq(θ)dθ = 1.

The following results of Rq(.) and Gq(.) are used throughout this manuscript.

Remark 2.2. ([52]) It is not difficult to verify that for ζ ∈ [0, 1],∫ ∞

0

θζψq(θ)dθ =

∫ ∞

0

θ−qζν(θ)dθ =
Γ(1 + ζ)

Γ(1 + qζ)
.

Lemma 2.9. ([52, 51]) The operators Rq(t) and Sq(t) have the following prop-
erties:

(i) For any fixed t ≥ 0, Rq(t) and Sq(t) are linear and bounded operators,
that is, for any x ∈ X,∥∥Rq(t)x

∥∥ ≤ M̂1∥x∥ and
∥∥Sq(t)x

∥∥ ≤ qM̂2

Γ(1 + q)
∥x∥.

(ii) {Rq(t), t ≥ 0} and {Sq(t), t ≥ 0} are strongly continuous.
(iii) For t ∈ I and any bounded subsets D ⊂ X, t→ {Rq(t)x : x ∈ D} and

t→ {Sq(t)x : x ∈ D} are equicontinuous if ∥Rq(t
q
2(θ))x−Rq(t

q
1(θ))x∥ →

0 with respect to x ∈ D as t2 → t1 for each fixed θ ∈ [0,∞).
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(iv) For any x ∈ X, α, β ∈ (0, 1), we have
ARq(t)x = A1−βRq(t)Aβx, t ∈ I ,

∥AαRq(t)∥ ≤ qM̂1αΓ(2− α)

Γ(1 + q(1− α))
t−αq, 0 < t ≤ T.

Theorem 2.10. (Hölder’s inequality) Assume that p, q ≥ 1, and 1
p + 1

q = 1. If
l ∈ Lp(I , R), m ∈ Lq(I , R), then for 1 ≤ q ≤ ∞ and lm ∈ L1(I , R) and

∥lm∥L1(I ) ≤ ∥l∥Lp(I )∥m∥Lq(I ).

Theorem 2.11. ([49]) (PC-Ascoli-Arzela Theorem) Let X be a Banach space
and A ⊂ PC(I ,X). If the following conditions are satisfied:

(i) A is uniformly bounded subset of PC(I ,X);
(ii) A is equicontinuous in (tk,tk+1), k = 0, 1, 2, ...m; where t0 = 0, tm+1 =

T ;
(iii) A(t) ≡ {x(t) | x ∈ A; t ∈ J\{t1...tm}}, A(t+k ) = {x(t+k )|x ∈ A} and

A(t−k ) = {x(t−k )|x ∈ A} is a relatively compact subsets of X.
Then A is a relatively compact subset of PC(I ,X).

Theorem 2.12. (Schaefer’s fixed point theorem) Let X be a Banach space and
F : X → X be a completely continuous operator. If the set E = {y ∈ X : y =
λF (y), 0 < λ < 1} is bounded, then F has at least a fixed point in X.

3. Existence Results

We introduce the following hypotheses:
(H1): The function G : I × Bh → X is continuous and there exist constants
WG > 0, 0 < α < 1 such that G is Xα valued and satisfies the following condi-
tions:

∥AβG (t, x)−AβG (t, y)∥ ≤ WG ∥x− y∥, t ∈ I , x, y ∈ Bh,

∥AβG (t, x)∥ ≤ WG (1 + ∥x∥), t ∈ I , x ∈ Bh.

(H2): The function F : I × Bh × X → X satisfies the following properties:
(i) For each t ∈ I , the function F (t, ., .) : Bh × X → X is continuous.
(ii) For each (x, ϕ) ∈ Bh × X, the function F (., x, ϕ) : I → X is strongly

measurable.
(iii) There exists a positive integrable function cF ∈ L1(I ) and a continuous

non decreasing function ℵF : [0,∞) → (0,∞) such that for all (t, x, ϕ) ∈
I × Bh × X, we have

∥F (t, x, ϕ)∥ ≤ cF (t)ℵF (∥x∥Bh
+ ∥ϕ∥X),

lim inf
r→∞

ℵF (r)

r
= Λ <∞.

(H3): The function W : D × Bh → X, where D = {(t, s) ∈ I × I ; 0 ≤ s ≤ t ≤
T}, satisfies followings:
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(i) For each (t, s) ∈ D, the function W(t, s, .) : Bh → X is continuous, and
for each x ∈ Bh, the function W(., ., x) : D → X is strongly measurable.

(ii) There exists constants N1 > 0 such that, for all t, s ∈ I and x ∈ Bh, we
have

∥W(t, s, x)∥ ≤ N1(1 + ∥x∥Bh
)

(H4): The functions Ik : Bh → X k = 1, 2, ...,m, are continuous, and there
exist nondecreasing continuous functions WIk

: R+ → R+ such that, for all
x ∈ Bh, we have

∥Ik(x)∥ ≤ WIk
(∥x∥), lim inf

r→∞

WIk
(r)

r
= σk <∞.

(H5): Ik ∈ C(X,X) and we can find Lk ∈ C[I ,R+] such that
∥Ik(x)∥X ≤ Lk(t)∥x∥X, x ∈ X, t ∈ I .

(H6): The functions Ik : Bh → X are continuous and there are positive constants
δk, k = 1, 2, ...,m, such that

∥Ik(x)− Ik(y)∥ ≤ δk∥x− y∥ x, y ∈ Bh.

(H7):
(1)

WG ∥A−β∥
[
M̂1(1 + ∥ϕ∥Bh

) + (1 + D∗
1 r + cn)

]
+K(q, β)WG

T qβ

qβ

(1 + D∗
1 r + cn) +

M̂2T
q

Γ(q + 1)
ℵF [(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))]

sups∈I cF (s) +mM̂1L0H[D∗
1 r + c̃n] < 1.

(2)

β1 =
(
WG (D

∗
1 (r)) +K(q, β)WG

T qβ

qβ
(1 + D∗

1 (r)) +
M̂2T

q

Γ(q + 1)
NF(

D∗
1 (r)

(
1 + TN1

)
+ TN1

)
sups∈I cF (s) + M̂1δk

)
< 1

Theorem 3.1. Assume that the hypotheses (H1) to (H7) are satisfied, then there
exists at least one fixed point and a unique solution of system (1.1)-(1.3) on I .

Proof. We will modify the structure (1.1)-(1.3) into a fixed point problem. Con-
sider the operator Υ : Bh → Bh defined by,

(Υ x)(t) =



ϕ(t), t ∈ (−∞, 0]

Rq(t)
[
ϕ(0)− G (0, ϕ)

]
+ G (t, xϱ(t,xt))

+
∫ t

0
ASq(t)(t− s)G (s, xϱ(s,xs))ds

+
∫ t

0
Sq(t)(t− s)F (s, xϱ(s,xs),

∫ s

0
W(s, τ, xϱ(τ,xτ ))dτ)ds

+
∑

0<tk<t Rq(t)(t− tk)Ik(x(tk)), t ∈ I .
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It is evident that the fixed points of the operator Υ are mild solutions of the
model (1.1)-(1.3). We define the function y(.) : (−∞, T ] → X by

y(t) =

{
ϕ(t), t ≤ 0;

Rq(t)ϕ(0), t ∈ I ;

then, y0 = ϕ. For every function z ∈ C(I ,R) with z(0) = 0, we allocate that ẑ
is characterized by:

ẑ(t) =

{
0, t ≤ 0,

z(t), t ∈ I .

If x(.) satisfies equation (2.4), we are able to decompose it as x(t) = z(t) +
y(t), t ∈ I , which suggests that xt = zt + yt for t ∈ I , and the function z(.)
satisfies

z(t) =



−Rq(t)G (0, ϕ) + G
(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt)

)
+
∫ t

0
ASq(t)(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys)

)
ds

+
∫ t

0
Sq(t)(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+
∑

0<tk<t Rq(t− tk)Ik(z(tk) + y(tk)), t ∈ I .

Let B′′
h = {z ∈ B′

h : z0 = 0}. Let ∥.∥B′′
h

be the seminorm in B′′
h described by

∥z∥B′′
h
= sups∈I ∥z(t)∥X + ∥z0∥Bh

= sups∈I ∥z(t)∥X, z ∈ B′′
h.

As a result, (B′′
h, ∥.∥B′′

h
) is a Banach space. We define the operator Υ̂ : B′′

h → B′′
h

by

(Υ̂z)(t) =



−Rq(t)G (0, ϕ) + G
(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt)

)
+
∫ t

0
ASq(t)(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys)

)
ds

+
∫ t

0
Sq(t)(t− s)F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
ds

+
∑

0<tk<t Rq(t− tk)Ik(z(tk) + y(tk)), t ∈ I .

We see that the operator Υ has a fixed point if and only if Υ̂ has a fixed point.
Let us demonstrate that Υ̂ has a fixed point.

Remark 3.1. From Lemma 2.1 and above assumptions, we have the following
estimates:

(i) ∥zϱ(s,zs+ys) + yϱ(s,zs+ys)∥Bh

≤ ∥zϱ(s,zs+ys)∥Bh
+ ∥yϱ(s,zs+ys)∥Bh

≤ D∗
1 sup0≤τ≤s∥z(τ)∥X + (D∗

2 + Jϕ)∥z0∥Bh
+ D∗

1 |y(s)|
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+ (D∗
2 + Jϕ)∥y0∥Bh

≤ D∗
1 sup0≤τ≤s∥z(τ)∥X + D∗

1 ∥Sq(t)∥L(X)|ϕ(0)|+ (D∗
2 + Jϕ)∥ϕ∥Bh

≤ D∗
1 sup0≤τ≤s∥z(τ)∥X + D∗

1M̂1H∥ϕ∥Bh
+ (D∗

2 + Jϕ)∥ϕ∥Bh

≤ D∗
1 sup0≤τ≤s∥z(τ)∥X + (D∗

1M̂1H + D∗
2 + Jϕ)∥ϕ∥Bh

.

If ∥z∥X < r, r > 0, then∥∥∥zϱ(s,zs+ys) + yϱ(s,zs+ys)

∥∥∥
Bh

≤ D∗
1 r + cn,

where cn = (D∗
1M̂1H + D∗

2 + Jϕ)∥ϕ∥Bh
.

(ii)
∥∥∥ m∑

k=1

Rq(t− tk)Ik(z(tk) + y(tk))
∥∥∥
X
≤ mM̂1∥Ik(z(tk) + y(tk))∥X. (3.1)

Since,
|Ik(z(tk) + y(tk))| ≤ Lk(t)(|z(tk) + y(tk)|)

≤ Lk(t)(sups∈I |z(t) + y(t)|)
≤ L0H∥zt + yt∥Bh

,

where L0 = max{Lk(t)|t ∈ I , k = 1, 2, 3, ...,m}.

Now,
∥zt + yt∥Bh

≤ ∥zt∥Bh
+ ∥yt∥Bh

≤ D1(t)sup0≤τ≤t∥z(τ)∥X + D2(t)∥z0∥Bh
+ D1(t)sup0≤τ≤t∥y(τ)∥X

+ D2(t)∥y0∥Bh

≤ D1(t)sup0≤τ≤t∥z(τ)∥X + D1(t)
[
∥Sq(t)∥L(X)|ϕ(0)|

]
≤ D∗

1 r + (D∗
1M̂1H + D∗

2 )∥ϕ∥Bh

≤ D∗
1 r + c̃n;

where c̃n = (D∗
1M̂1H + D∗

2 )∥ϕ∥Bh
. Hence, Equation (3.1) becomes∥∥∥ m∑

k=1

Rq(t− tk)Ik(z(tk) + y(tk))
∥∥∥
X
≤ mM̂1L0H[D∗

1 r + c̃n].

Let Br = {z ∈ B′′
h : z(0) = 0; ∥z∥B′′

h
≤ r} for some r > 0,

where r is any fixed finite real number that fulfills the inequality. The proof
will be given in several steps.

Step 1 : We show that there exists some r > 0, such that Υ̂(Br) ⊂ Br.
If it is not true for each positive number r, there exists a function zr(.) ∈ Br

and some t ∈ I such that ∥(Υ̂zr)(t)∥ > r. On the other hand, from hypotheses
(H2)(i)-(ii), (H3), Lemma 2.3 (i) and Hölder’s inequality, we obtain

r < ∥(Υ̂zr)(t)∥
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≤ ∥ −Rq(t)G (0, ϕ)∥+ ∥G (t, zϱ(t,zt+yt) + yϱ(t,zt+yt))
∥∥∥

+
∥∥∥ ∫ t

0

(t− s)q−1ASq(t− s)G (s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds
∥∥∥

+
∥∥∥ ∫ t

0

(t− s)q−1Sq(t− s)F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)
ds
∥∥∥

+
∥∥∥ ∑

0<tk<t

Rq(t− tk)Ik(z(tk) + y(tk))
∥∥∥

=

4∑
i=1

Ji. (3.2)

Let us estimate, Ji, i = 1, 2, 3, 4. By assumption (H1), we have

J1 ≤
∥∥Rq(t)G (0, ϕ)

∥∥
≤ M̂1∥A−β∥

∥∥AβG (0, ϕ)
∥∥

≤ M̂1WG ∥A−β∥(1 + ∥ϕ∥Bh
) (3.3)

J2 ≤ ∥G (t, zϱ(t,zt+yt) + yϱ(t,zt+yt))∥
≤ ∥A−β∥

∥∥AβG (t, zϱ(t,zt+yt) + yϱ(t,zt+yt))
∥∥

≤ ∥A−β∥WG (1 +
∥∥zϱ(t,zt+yt) + yϱ(t,zt+yt)

∥∥)
≤ WG ∥A−β∥(1 + D∗

1 r + cn). (3.4)

By using Lemma 2.3 and Hölder’s inequality, one can deduce that

J3 ≤
∥∥∥ ∫ t

0

(t− s)q−1ASq(t− s)G (s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds
∥∥∥

≤
∫ t

0

∥∥∥(t− s)q−1A1−βSq(t− s)AβG (s, zϱ(s,zs+ys) + yϱ(s,zs+ys))
∥∥∥ds

≤
∫ t

0

∥∥∥(t− s)q−1A1−βSq(t− s)
∥∥∥× (3.5)[∥∥∥AβG (s, zϱ(s,zs+ys) + yϱ(s,zs+ys))

∥∥∥]ds
≤
∫ t

0

{
q

∫ ∞

0

θψq(θ)(t− s)q−1A1−βRq((t− s)qθ)dθ
}

(3.6)[
WG (1 + D∗

1 r + cn)
]
ds

≤
∫ t

0

qM1−β(t− s)qβ−1
[ ∫ ∞

0

θβψq(θ)dθ
][
WG (1 + D∗

1 r + cn)
]
ds
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≤ qM1−βΓ(1 + β)

Γ(1 + qβ)

∫ t

0

(t− s)qβ−1
[
WG (1 + D∗

1 r + cn)
]
ds

≤ K(q, β)

∫ t

0

(t− s)qβ−1WG (1 + D∗
1 r + cn)ds

≤ K(q, β)WG
T qβ

qβ
(1 + D∗

1 r + cn). (3.7)

Using assumptions (H2) and (H3), we have

J4 ≤
∥∥∥ ∫ t

0

(t− s)q−1Sq(t− s)F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys), (3.8)∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)∥∥∥ds

≤
∫ t

0

∥∥∥(t− s)q−1Sq(t− s)F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys), (3.9)∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)∥∥∥ds

≤ M̂2

Γ(q)

∫ t

0

(t− s)q−1cF (s)ℵF

(∥∥∥zϱ(s,zs+ys) + yϱ(s,zs+ys)

∥∥∥
+
∥∥∥ ∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
∥∥∥)ds

≤ M̂2T
q

Γ(q + 1)
cF (s)ℵF

(
∥zs + ys∥+

∥∥∥ ∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
∥∥∥)

≤ M̂2T
q

Γ(q + 1)
cF (s)ℵF (D∗

1 r + cn) + TN1(1 + D∗
1 r + cn)

≤ M̂2T
q

Γ(q + 1)
ℵF [(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))] sup

s∈I
cF (s). (3.10)

Combining the estimate (J1)− (J4) and (3.1) together with (3.2), we obtain

r ≤ ∥Υ̂(zr)(t)∥

≤ M̂1WG ∥A−β∥(1 + ∥ϕ∥Bh
) +WG ∥A−β∥(1 + D∗

1 r + cn)

+K(q, β)WG
T qβ

qβ
(1 + D∗

1 r + cn)

+
M̂2T

q

Γ(q + 1)
ℵF [(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))]sups∈I cF (s)

+mM̂1L0H[D∗
1 r + c̃n].

Dividing both sides by r and taking r → ∞, we get that

WG ∥A−β∥
[
M̂1(1 + ∥ϕ∥Bh

) + (1 + D∗
1 r + cn)

]
+K(q, β)WG
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T qβ

qβ
(1 + D∗

1 r + cn) +
M̂2T

q

Γ(q + 1)
ℵF [(D∗

1 r + cn)

+ TN1(1 + (D∗
1 r + cn))]sups∈I cF (s) +mM̂1L0H[D∗

1 r + c̃n] ≥ 1,

which is a contradiction to (H7)(1). For this reason, for some positive number
r, we have Υ̂(Br) ⊂ Br.
Step 2 : Υ̂ is continuous on Br.
Let znn∈N ⊂ Br with zn → z in Br as n→ ∞.
Denote

Fn(s) = F
(
s, znϱ(s,zn

s +ys)
+ yϱ(s,zn

s +ys),

∫ s

0

W(s, τ, znϱ(τ,zn
τ +yτ )

+ yϱ(τ,zn
τ +yτ ))dτ

)
F(s) = F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)
.

Then by using the hypotheses (H3), (H6) and Lebesgue’s Dominated convergence
theorem, we obtain∫ t

0

(t− s)q−1∥Fn(s)−F(s)∥ds→ 0 as n→ ∞, t ∈ I . (3.11)

Now,

∥Υ̂zn − Υ̂z∥C ≤ M̂2q

Γ(1 + q)

∫ t

0

(t− s)q−1∥Fn(s)−F(s)∥ds (3.12)

Observing that (3.4) and (3.6), we have
∥Υ̂zn − Υ̂z∥C → 0 as n→ ∞,

which implies that ν̂ is continuous on Br.
Step 3: Υ̂(Br) is equicontinuous on I . Let Z ∈ Υ̂(Br) and 0 ≤ t1 ≤ t2 ≤ T .

Then there is z ∈ Br such that

∥Z(t2)− Z(t1)∥ ≤
∥∥∥Rq(t2)−Rq(t1)

∥∥∥+ [∥ϕ(0)∥+ ∥G (0, ϕ(0))∥
]

+
∥∥∥ ∫ t2

0

(t2 − s)q−1Sq(t)(t2 − s)F(s)ds

−
∫ t1

0

(t1 − s)q−1Sq(t)(t1 − s)F(s)ds
∥∥∥

≤
∥∥∥Rq(t2)−Rq(t1)

∥∥∥+ [∥ϕ(0)∥+ ∥G (0, ϕ(0))∥
]

+
∥∥∥ ∫ t2

t1

(t2 − s)q−1Sq(t)(t2 − s)F(s)ds
∥∥∥

+
∥∥∥ ∫ t1

t1−∈
(t2 − s)q−1

[
Sq(t)(t2 − s)− Sq(t)(t1 − s)

]
F(s)ds

∥∥∥
+
∥∥∥ ∫ t2

t1−∈

[
(t2 − s)q−1 − (t1 − s)q−1

]
Sq(t)(t1 − s)F(s)ds

∥∥∥
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+
∥∥∥ ∫ t1−∈

0

(t2 − s)q−1
[
Sq(t)(t2 − s)− Sq(t)(t1 − s)

]
F(s)ds

∥∥∥
+
∥∥∥ ∫ t1−∈

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Sq(t)(t1 − s)F(s)ds

∥∥∥.
Using Lemma 2.3, we can verify that the right hand side of the above inequality
tends to zero as t2 → t1.

As a consequence of steps 1-3 together with the Ascoli-Arzela Theorem, we
conclude that Υ̂ : B′′

h → B′′
h is completely continuous. As a consequence of

Schaefer’s fixed theorem we deduce that Z has a fixed point, which is a mild
solution of the problem (1.1)-(1.3).
Further,

∥Υx(t)−Υy(t)∥

≤
∥∥∥[Rq(t)

[
ϕ(0)− G (0, ϕ(0))

]
+ G (t, xϱ(t,xt))

+

∫ t

0

(t− s)q−1ASq(t)(t− s)G (s, xϱ(s,xs))ds

+

∫ t

0

(t− s)q−1Sq(t)(t− s)

F
(
s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)
ds

+
∑

0<tk<t

Rq(t)(t− tk)Ik(x(tk))

]
−

[
Rq(t)

[
ϕ(0)− G (0, ϕ(0))

]
+ G (t, yϱ(t,yt)) +

∫ t

0

(t− s)q−1ASq(t)(t− s)G (s, yϱ(s,ys))ds

+

∫ t

0

(t− s)q−1Sq(t)(t− s)

F
(
s, yϱ(s,ys),

∫ s

0

W(s, τ, yϱ(τ,yτ ))dτ
)
ds

+
∑

0<tk<t

Rq(t)(t− tk)Ik(y(tk))

]∥∥∥
≤
∥∥∥AβG (t, xϱ(t,xt))−AβG (t, yϱ(t,yt))

∥∥∥
+

∫ t

0

(t− s)q−1ASq(t)(t− s)ds
∥∥∥AβG (s, xϱ(s,xs))−AβG (s, yϱ(s,ys))

∥∥∥
+

∫ t

0

(t− s)q−1Sq(t)(t− s)ds
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∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)
−

F
(
s, yϱ(s,ys),

∫ s

0

W(s, τ, yϱ(τ,yτ ))dτ
)∥∥∥

+
∥∥∥ ∑

0<tk<t

Rq(t)(t− tk)
[
Ik(x(tk))− Ik(y(tk))

]∥∥∥
≤

∥∥∥AβG (t, xϱ(t,xt))−AβG (t, yϱ(t,yt))
∥∥∥

+

∫ t

0

(t− s)q−1ASq(t)(t− s)ds
∥∥∥AβG (s, xϱ(s,xs))−AβG (s, yϱ(s,ys))

∥∥∥
+

∫ t

0

(t− s)q−1Sq(t)(t− s)ds∥∥∥F(s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)
−

F
(
s, yϱ(s,ys),

∫ s

0

W(s, τ, yϱ(τ,yτ ))dτ
)∥∥∥

+ M̂1

∑
0<tk<t

∥∥∥Ik(x(tk))− Ik(y(tk))
∥∥∥

≤ WG D∗
1 (r)∥x− y∥

+K(q, β)

∫ t

0

(t− s)qβ−1dsWG (1 + D∗
1 (r))∥x− y∥

+
M̂2

Γ(q)

∫ t

0

(t− s)q−1ds cF (s)NF

(
D∗

1 (r)∥x− y∥+ TN1(1 + D∗
1 (r))∥x− y∥

)
+ M̂1δk∥x− y∥

≤ WG D∗
1 (r)∥x− y∥

+K(q, β)WG
T qβ

qβ
(1 + D∗

1 (r))∥x− y∥

+
M̂2T

q

Γ(q + 1)
NF

(
D∗

1 (r)∥x− y∥+ TN1(1 + D∗
1 (r))∥x− y∥

)
sups∈I cF (s)

+ M̂1δk∥x− y∥

≤
(
WG D∗

1 (r) +K(q, β)WG
T qβ

qβ
(1 + D∗

1 (r))

+
M̂2T

q

Γ(q + 1)
NF

(
D∗

1 (r)
(
1 + TN1

)
+ TN1

)
sups∈I cF (s) + M̂1δk

)
∥x− y∥
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∥Υx(t)−Υy(t)∥ ≤ β1∥x− y∥,
where

β1 =
(
WG D∗

1 (r) +K(q, β)WG
T qβ

qβ
(1 + D∗

1 (r))

+
M̂2T

q

Γ(q + 1)
NF

(
D∗

1 (r)
(
1 + TN1

)
+ TN1

)
sups∈I cF (s) + M̂1δk

)
, β1 < 1

Thus Υ is a contraction mapping on B′′
h. By applying the well known Banach

contraction principle, the operator Υ has a unique fixed point in B′′
h. Hence, the

problem (1.1)-(1.3) has a unique solution in B′′
h. □

Remark 3.2. The existence and uniqueness results of Theorem 3.1 is proved
using the Lipschitz condition given in (H1). The same result can also be proved
by replacing the first part of condition of (H1) by the following growth conditions.

(i) G : I × Bh → X is continuous function and verifies the following
condition:
There exists an integrable function mG : I → [0,∞) and a continuous
non-decreasing function WG : [0,∞) → (0,∞) such that ∥G (t, x)∥Bh

≤
mG (t)WG (∥x∥), (t, x) ∈ I × Bh.

Remark 3.3. In Theorem 3.1, we apply two fixed point theorems (Schaefer’s
and Banach fixed point theorems) to prove existence and uniqueness of solutions.
Note that Banach fixed point theorem alone gives existence and uniqueness of
solutions with only the assumption that the appeared functions are contractions.
On the other hand, Schaefer’s fixed point theorem alone gives existence result
with different assumptions usually not so strong as contraction.

4. Controllability Result

We consider the controllability of fractional impulsive neutral integro-differential
systems with state-dependent delay of the form

CDq
t

[
x(t)− G (t, xϱ(t,xt))

]
= Ax(t) + Bu(t) + F

(
t, xϱ(t,xt),

∫ t

0

W(t, s, xϱ(s,xs))ds
)
,

t ∈ I (4.1)
∆x|t=tk = Ik(x(tk)); k = 1, 2, ..,m, t ̸= tk (4.2)

x0 = ϕ ∈ Bh, t ∈ (−∞, 0], (4.3)

where CDq
t denote the Caputo derivative of order 0 < q < 1. The control

function u(.) ∈ L2(I , u), a Banach space of admissible control function with u
as a Banach space. Furthermore, Bh is a phase space endowed with a seminorm
∥.∥Bh

and B is a bounded linear operator u to X. For almost any continuous
function x characterized on (−∞, T ] and for almost any t > 0, we designate by
xt the part of Bh characterized by xt(θ) = x(t+ θ) for θ ≥ 0. Now xt(.) belongs
to some abstract space Bh defined with G : I ×Bh → X, F : I ×Bh ×X → X,
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W : D ×Bh → X, i = 1, 2; D = {(t, s) ∈ I ×I : 0 ≤ s ≤ t ≤ T}, ϱ : I ×Bh →
(−∞, T ], Ik : X → X(k = 1, 2, . . . ,m) are suitable functions.

Definition 4.1. A function x : (−∞, T ] → X is a mild solution of the model
(4.1) − (4.3) on [0, T ] if x0 = ϕ, xϱ(s,xs) ∈ Bh for every s ∈ [0, T ], the
restriction of x(.) to [0, T ] is continuous for each 0 ≤ t ≤ T , the function
ASq(t − s)G (s, xϱ(s,xs)), s ∈ [0, T ] is integrable and the following integral equa-
tion is satisfied.

x(t) =Rq(t)
[
ϕ(0)− G (0, ϕ)

]
+ G (t, xϱ(t,xt))

+

∫ t

0

(t− s)q−1ASq(t− s)G (s, xϱ(s,xs))ds

+

∫ t

0

(t− s)q−1Sq(t− s)
[
Bu(s) + F

(
s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)]
ds

+

m∑
k=1

Rq(t− tk)Ik(x(tk), t ∈ I . (4.4)

Definition 4.2. The system (4.1)-(4.3) is said to be controllable on the interval
I if and only if for x0, x1 ∈ X, there exists a control u ∈ L2(I , u) such that
the mild solution x(t) of (4.1)-(4.3) satisfies x(0) = x0 and x(T ) = x1.

To establish our controllability results, we introduce the following assump-
tions:
(H8): The linear operator W : L2(I , u) → X defined by

Wu :

∫ T

0

(T − s)q−1Gq(T − s)Bu(s)ds

has an inverse operator W−1 that takes values in L2(I , u)/kerW and there
exists two constants M2, M3 > 0 such that ∥B∥ ≤ M2 and ∥BW−1∥ ≤ M3.
For convenience, let us take

M4 := K1∥m∥
L

1
q1
(I , R+)

Theorem 4.3. Assume that the hypotheses (H1) to (H8) are satisfied. Then
the system (4.1)-(4.3) is controllable on I .

Proof. Using the hypotheses (H2), for arbitrary function x(.) ∈ C, we define the
control ux(t) by

x(t) = Rq(t)
[
ϕ(0)− G (0, ϕ(0))

]
+ G (t, xϱ(t,xt))

+

∫ t

0

(t− s)q−1ASq(t− s)G (s, xϱ(s,xs))ds

+

∫ t

0

(t− s)q−1Sq(t− s)

[
Bu(s)+
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F
(
s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)]
ds

+
∑

0<tk<t

Rq(t)(t− tk)Ik(x(tk)), t ∈ I .

ux(t) = W−1

[
x1 −Rq(T )

[
ϕ(0)− G (0, ϕ(0))

]
− G (t, xϱ(t,xt))

−
∫ T

0

(T − s)q−1ASq(T − s)G (s, xϱ(s,xs))ds

−
∫ T

0

(T − s)q−1Sq(T − s)
[
F
(
s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)]
ds

−
∑

0<tk<t

Rq(t)(t− tk)Ik(x(tk))

]
(t), t ∈ I .

We show that, using the control and the operator Υ : B′

h → B′′

h

Υ x(t) =



ϕ(t), t ∈ (−∞, 0]

Rq(t)
[
G (0, ϕ)

]
+ G (t, xϱ(t,xt))

−
∫ t

0
(t− s)q−1ASq(t− s)G (s, xϱ(s,xs))ds

−
∫ t

0
(t− s)q−1Sq(t− s)

[
F
(
s, xϱ(s,xs),

∫ s

0
W(s, τ, xϱ(τ,xτ ))dτ

)
+Bux(s)

]
ds−

∑
0<tk<t Rq(t)(t− tk)Ik(x(tk)), t ∈ I

(4.5)
has a fixed point. This fixed point is a mild solution of a given system. Clearly,
Υx(T ) = x1, which implies the fractional system (4.1)-(4.3) is controllable on
I .
For Υ ∈ Bh, we define y : (∞, T ] → X by

y(t) =

{
ϕ(t), t ≤ 0

Rq(t)ϕ(0), t ∈ I .

If x(.) satisfies above equation, then we can split it as x(t) = z(t) + y(t),
t ∈ I , which implies that xt = zt + yt for t ∈ I and the function z(.) satisfies

z(t) = −Rq(t)G (0, ϕ) + G
(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt)

)
+

∫ t

0

(t− s)q−1ASq(t− s)G
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys)

)
ds

+

∫ t

0

(t− s)q−1Sq(t− s)

[
F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),
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0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)
+ Buz+y(s)

]
ds

+
∑

0<tk<t

Rq(t− tk)Ik(z(tk) + y(tk)), t ∈ I ,

where

uz+y(s) = W−1

[
x1 −Rq(T )G (0, ϕ)− G (t, zϱ(t,zt+yt) + yϱ(t,zt+yt))

−
∫ T

0

(T − s)q−1ASq(T − s)G (s, zϱ(s,zs+ys) + yϱ(s,zs+ys))ds

−
∫ T

0

(T − s)q−1Sq(T − s)
[
F (s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ))dτ)
]
ds−

∑
0<tk<t

Rq(t− tk)Ik(x(tk))

]
(t), t ∈ I .

Let B′′
h = {z ∈ B′

h : z0 = 0}. Let ∥.∥B′′
h

be the seminorm in B′′
h described by :

∥z∥B′′
h
= sups∈I ∥z(t)X∥+ ∥z0∥Bh

= sups∈I ∥z(t)∥X, z ∈ B′′
h.

Define the operator Υ̂ : B′′
h → B′′

h by

(ν̂z)(t) =



0, t ∈ (−∞, 0]

−Rq(t)G (0, ϕ) + G
(
t, zϱ(t,zt+yt) + yϱ(t,zt+yt)

)
+
∫ t

0
ASq(t)(t− s)G

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys)

)
ds

+
∫ t

0
Sq(t)(t− s)

[
F
(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),∫ s

0
W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ

)
+ Buy(s)

]
ds

+
∑

0<tk<t Rq(t− tk)Ik(z(tk) + y(tk)), t ∈ I .

So our main goal is to show that Υ̂ has a fixed point and the proof is given in
the following steps:

Step 1 : We show that there exists some r > 0, such that Υ̂(Br) ⊂ Br. If it is
not true for each positive number r, there exists a function zr(.) ∈ Br and some
t ∈ I such that ∥Υ̂(zr)(t)∥ > r.
Then by hypotheses (H2)(i),(ii), (H3), Lemma 2.3(i), and Hölder’s inequality,
we obtain

r < ∥(Υ̂ z)r(t)∥

≤
∥∥∥−Rq(t)

[
G (0, ϕ)

]
+ G (t, xϱ(t,xt))
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−
∫ t

0

(t− s)q−1ASq(t− s)G (s, xϱ(s,xs))ds

−
∫ t

0

(t− s)q−1Sq(t− s)
[
F
(
s, xϱ(s,xs),

∫ s

0

W(s, τ, xϱ(τ,xτ ))dτ
)
+ Buy(s)

]
ds

−
∑

0<tk<t

Rq(t)(t− tk)Ik(x(tk))
∥∥∥, t ∈ I

≤ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh
) +WG ∥Aβ∥(1 + D∗

1 r + cn)

+K(q, β)WG
T qβ

qβ
(1 + D∗

1 r + cn)

+
M̂2M4q

Γ(1 + q)
ℵG

[
(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))

]
+

M̂2M2q

Γ(1 + q)

√
b2q−1

2q − 1
∥ury∥L2 +mM̂1L0H

[
D∗

1 r + c̃n

]
,

where

∥ury∥L2 ≤ M3

[
∥x1∥+ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh

) +WG ∥Aβ∥(1 + D∗
1 r + cn)

+K(q, β)WG
T qβ

qβ
(1 + D∗

1 r + cn)

+
M̂2M4q

Γ(1 + q)
ℵG

[
(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))

]
+mM̂1L0H[D∗

1 r + c̃n]

]

≤ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh
) +WG ∥Aβ∥(1 + D∗

1 r + cn)

+K(q, β)WG
T qβ

qβ
(1 + D∗

1 r + cn) +
M̂2M4q

Γ(1 + q)
ℵG

[
(D∗

1 r + cn)

+ TN1(1 + (D∗
1 r + cn))

]
+

M̂2M2q

Γ(1 + q)

√
b2q−1

2q − 1

[
∥x1∥+ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh

)

+WG ∥Aβ∥(1 + D∗
1 r + cn) +K(q, β)WG

T qβ

qβ
(1 + D∗

1 r + cn)

+
M̂2M4q

Γ(1 + q)
ℵG

[
(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))

]
+mM̂1L0H[D∗

1 r + c̃n]

]
+mM̂1L0H

[
D∗

1 r + c̃n

]
.
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r ≤

(
1 +

M̂2M2M3q

Γ(1 + q)

√
b2q−1

2q − 1

)[
∥x1∥+ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh

)+

WG ∥Aβ∥(1 + D∗
1 r + cn) +K(q, β)WG

T qβ

qβ
(1 + D∗

1 r + cn)

+
M̂2M4q

Γ(1 + q)
ℵG

[
(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))

]
+mM̂1L0H

[
D∗

1 r + c̃n

]]
. (4.6)

Let ι =
[
(D∗

1 r + cn) + TN1(1 + (D∗
1 r + cn))

]
and NF =

M̂2M4q

Γ(1 + q)
. Note that

ι→ ∞ as r → ∞. Now dividing both sides by r, taking limit as r → ∞, we get,

1 ≤ 1

r

(
1 +

M̂2M2M3q

Γ(1 + q)

√
b2q−1

2q − 1

)[
∥x1∥+ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh

)

+WG ∥Aβ∥(1 + D∗
1 r + cn) +K(q, β)WG

T qβ

qβ
(1 + D∗

1 r + cn)

+NF lim
ι→∞

inf
ℵG (ι)

ι
+mM̂1L0H

[
D∗

1 r + c̃n

]]
. (4.7)

We get 1 ≤ 0. This is a contradiction. Hence, for some positive integer r,
Υ̂(Br) ⊆ Br.
Step 2 : Υ̂ is continuous on Br.
Let znn∈N ⊂ Br with zn → z in Br as n→ ∞.
Denote

Fn(s) = F
(
s, znϱ(s,zn

s +ys)
+ yϱ(s,zn

s +ys),

∫ s

0

W(s, τ, znϱ(τ,zn
τ +yτ )

+ yϱ(τ,zn
τ +yτ ))dτ

)
F(s) = F

(
s, zϱ(s,zs+ys) + yϱ(s,zs+ys),

∫ s

0

W(s, τ, zϱ(τ,zτ+yτ ) + yϱ(τ,zτ+yτ ))dτ
)
.

Then by using the hypotheses (H3), (H6) and Lebesgue’s Dominated conver-
gence theorem, we obtain∫ t

0

(t− s)q−1∥Fn(s)−F(s)∥ds→ 0 as n→ ∞, t ∈ I . (4.8)

Now,

∥Υ̂zn − Υ̂z∥C ≤ M̂2q

Γ(1 + q)

∫ t

0

(t− s)q−1∥Fn(s)−F(s)∥ds

+

√
b2q−1

2q − 1

qM̂1M2

Γ(1 + q)
∥uny − uy∥L2 . (4.9)
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Observing that (4.8), (4.9) and (4.10), we have ∥Υ̂zn − Υ̂z∥C → 0 as n→ ∞,

which implies that Υ̂ is continuous on Br.
Step 3: Υ̂(Br) is equicontinuous on I .
Let Z ∈ Υ̂(Br) and 0 ≤ t1 ≤ t2 ≤ T . Then there is z ∈ Br such that
∥Z(t2)− Z(t1)∥

≤ ∥
∫ t2

0

(t2 − s)q−1Sq(t)(t2 − s)
[
F (s) +Buy(s)

]
ds

−
∫ t1

0

(t1 − s)q−1Sq(t)(t1 − s)
[
F (s) +Buy(s)

]
ds∥

≤ ∥
∫ t2

t1

(t2 − s)q−1Gq(t)(t2 − s)
[
F (s) +Buy(s)

]
ds∥

+ ∥
∫ t1

t1−∈
(t2 − s)q−1

[
Sq(t)(t2 − s)− Gq(t)(t1 − s)

][
F (s) +Buy(s)

]
ds∥

+ ∥
∫ t1

t1−∈

[
(t2 − s)q−1 − (t1 − s)q−1

]
Sq(t)(t1 − s)

[
F (s) +Buy(s)

]
ds∥

+ ∥
∫ t1−∈

0

(t2 − s)q−1
[
Sq(t)(t2 − s)− Sq(t)(t1 − s)

][
F (s) +Buy(s)

]
ds∥

+ ∥
∫ t1−∈

0

[
(t2 − s)q−1 − (t1 − s)q−1

]
Sq(t)(t1 − s)

[
F (s) +Buy(s)

]
ds∥.

Using Lemma 2.3, we can verify that the right hand side of the above inequality
tends to zero as t2 → t1.

As a consequence of steps 1-3 together with the Ascoli-Arzela Theorem, we
conclude that Υ̂ : B′′

h → B′′
h is completely continuous. As a consequence of

Schaefer’s fixed theorem we deduce that Z has a fixed point, which is a mild
solution of the problem (1.1)-(1.3). Hence, the system (4.1)-(4.3) is controllable
on I . □

5. Applications

Example 1. Consider the fractional neutral impulsive integro-differential
equations with state dependent delay of the form:

CDq
t

[
u(t, x)−

∫ t

−∞
e2(s−t)u(s− ϱ1(s)ϱ2(∥u(s)∥), x)

49
ds
]

=
∂2

∂x2
u(t, x) +

∫ t

−∞
e2(s−t)u(τ − ϱ1(τ)ϱ2(∥u(s)∥), x)

9
ds

+ µ(t, x) +

∫ t

0

sin(t− s)

∫ s

−∞
e2(τ−s)u(τ − ϱ1(τ)ϱ2(∥u(τ)∥), x)

25
dτds

(5.1)
u(t, 0) = 0 = u(t, π), t ≥ 0, (5.2)
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u(t, x) = ϕ(t, x) t ∈ [−∞, 0], x ∈ [0, π] (5.3)

∆u(tk)(x) =

∫ tk

−∞
Qk(tk − s)u(s, x)dx, x ∈ [0, π]. (5.4)

where CDq
t is Caputo’s fractional of order 0 < q < 1, 0 < t1 < t2 < ... < tm < T

are positive numbers, and ϕ ∈ Bh. We consider X = L2[0, π] with the norm |.|L2

and defined the operator A : D(A) ⊂ X → X by AW = W ′′ with the domain:
D(A) = {W ∈ X : W ,W ′′are absolutely continuous,W ′′ ∈ X, W (0) = W (π) = 0}.
Then

AW =
∞∑

n=1

n2⟨W ,Wn⟩Wn, W ∈ D(A),

where Wn(s) =

√
2

π
sin(ns), n=1,2,...,is the orthogonal set of eigenfunctions of

(−A). It is well known that (−A) is the infinitesimal generator of an analytic
semigroup {R(t)}t≥0 in X and is given by

R(t)W =

∞∑
n=1

e−n2t⟨W , Wn⟩Wn, for all W ∈ X, and t > 0.

Then the operator (−A)

1

2 is given by

(−A)

1

2W =

−∞∑
n=1

n⟨W ,Wn⟩Wn, W ∈
(
D(−A)

1

2
)
,

in which(
D(−A)

1

2
)
=

{
W (.) ∈ X :

∞∑
n=1

n⟨W ,Wn⟩Wn ∈ X
}

and
∥∥∥(−A)

−
1

2
∥∥∥ = 1.

Therefore, we conclude that ((−A)) is of sectorial type and the correspond-
ing properties hold. For phase space, we choose H = e2s, s < 0, then l =∫ 0

−∞ H(s)ds =
1

2
<∞, for t ∈ (−∞, 0], and determine

∥ϕ∥Bh
=

∫ 0

−∞
H(s) supθ∈[s,0] ∥ϕ(θ)∥L2ds.

Hence, (t, ϕ) ∈ [0, T ]× Bh, where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π].
Set

u(t)(x) = u(t, x), ρ(t, ϕ) = ρ1(t)ρ2(∥ϕ(0)∥),
we have

G (t, ϕ)(x) =

∫ 0

−∞
e2(s)

ϕ

49
ds,
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F (t, ϕ,H ϕ)(x) =

∫ 0

−∞
e2(s)

ϕ

9
ds+ H ϕ(x),

and

Ik(ϕ)(x) =
∫ 0

−∞
Qk(θ)ϕ(θ)(x)dθ, k = 1, 2, ...,m,

where

(H ϕ)(x) =

∫ t

0

sin(t− s)

∫ 0

−∞
e2τ

ϕ

25
dτds.

Further, we define the operator B : U → X by Bu(t, x) = µ(t, x), 0 < x < π,
u ∈ U , where µ : [0, 1] × [0, π] → [0, π], then using these configurations, the
system (4.1)-(4.3) is usually written in the theoretical form of system (1.1)-
(1.3).
To treat this system we assume that ϱi : [0,∞] → [0,∞), i = 1, 2 are continuous.
Now, we can see that t ∈ [0, 1], ϕ ∈ Bh, we have

∥∥∥(−A)

1

2G (t, ϕ1)− (−A)

1

2G (t, ϕ2)
∥∥∥

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ϕ1
49

∥∥∥ds+ ∫ 0

−∞
e2(s)

∥∥∥ϕ2
49

∥∥∥ds)2

dx

)1

2

≤

(∫ π

0

(
1

49

∫ 0

−∞
e2(s)sup∥ϕ1∥ds+

1

49

∫ 0

−∞
e2(s)sup∥ϕ2∥ds

)2

dx

)1

2

≤
√
ϕ

49

∥∥∥ϕ1∥∥∥
Bh

+

√
ϕ

49

∥∥∥ϕ2∥∥∥
Bh

≤
√
ϕ

49

∥∥∥(ϕ1 − ϕ2)
∥∥∥
Bh

.

Similarly, we conclude∥∥∥F (t, π,Hπ)
∥∥∥
L2

≤

(∫ π

0

(∫ 0

−∞
e2(s)

∥∥∥ϕ
9

∥∥∥ds+ ∫ t

0

∥∥∥sin(t− s)
∥∥∥ ∫ 0

−∞
e2(τ)

∥∥∥ ϕ
25

∥∥∥dτds)2

dx

)1

2

≤

(∫ π

0

(
1

9

∫ 0

−∞
e2(s) sup ∥ϕ∥ds+ 1

25

∫ 0

−∞
e2(s)sup∥ϕ∥ds

)2

dx

)1

2

≤
√
ϕ

9

∥∥∥ϕ∥∥∥
Bh

+

√
ϕ

25

∥∥∥ϕ∥∥∥
Bh
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≤ [m1(t) +
√
πm2(t)]∥ϕ∥Bh

≤ mF (t)(∥ϕ∥Bh
),

where mF (t) =
34
√
π

225
.

Therefore the condition (H1)− (H7) are all satisfied and

1

r

(
1 +

M̂2M2M3q

Γ(1 + q)

√
b2q−1

2q − 1

)[
∥x1∥+ M̂1WG ∥Aβ∥(1 + ∥ϕ∥Bh

)

+WG ∥Aβ∥(1 + D∗
1 r + cn) +K(α, β)WG

Tαβ

αβ
(1 + D∗

1 r + cn)

+NF lim
ι→∞

inf
ℵG (ι)

ι
+mM̂1L0H

[
D∗

1 r + c̃n

]]
< 1.

Hence by Theorem (4.1), we realize that the system (4.1)-(4.3) has a unique mild
solution on [0, 1].

Example 2. In this section, we provide an illustration of the existence results
for an impulsive fractional neutral integro differential with state dependent delay
of the form

CDq
t

[
u(t, x)−

∫ t

−∞
Υ1(t, x, s− t)u(s− ρ1(t)ρ2(∥u(t)∥), x)ds

]
=

∂2

∂x2
u(t, x) +

∫ t

−∞
Υ2(t, x, s− t)P1(u(s− ρ1(t)ρ2(∥u(t)∥), x))ds

+

∫ t

0

∫ s

−∞
K1(s− τ)P2(u(τ − ρ1(t)ρ2(∥u(τ)∥), x))dτ ds,

x ∈ [0, π], 0 ≤ t ≤ T, t ̸= tk, (5.5)
u(t, 0) = 0 = u(t, π), t ≥ 0, (5.6)
u(t, x) = ϕ(t, x), t ∈ (−∞, 0], x ∈ [0, π], (5.7)

∆u(tk)(x) =

∫ tk

−∞
Qk(tk − s)u(s, x)ds, x ∈ [0, π], k = 1, 2, ...,m, (5.8)

where CDq
t is Caupto’s fractional derivative of order 0 < q < 1, 0 < t1 < t2 <

... < tn < T are pre-fixed numbers and ϕ ∈ Bh. We consider X = L2[0, π] with
the norm |.|L2 and defined the operator A : D(A) ⊂ X → X by AW = W ′′ with
the domain:
D(A) = {W ∈ X : W ,W ′′ are absolutely continuous,W ′′ ∈ X,W (0) = W (π) = 0}.

Then

AW =

∞∑
n=1

n2⟨W ,Wn⟩Wn, W ∈ D(A),
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where Wn(s) =

√
2

π
sin(ns), n = 1, 2, ..., is the orthogonal set of eigenfunctions

of A. It is well known that A is the infinitesimal generator of an analytic
semigroup {R(t)}t≥0 in X and is given by:

R(t)W =

∞∑
n=1

e−n2t⟨W ,Wn⟩Wn, for all W ∈ X, and t > 0.

From these outflows, it follows that (R(t))t≥0 is a uniformly bounded semigroup,
so that R(λ,A) = (λ − A)−1 is a sectorial operator for all λ ∈ ρ(A); that is,
A ∈ Aα(θ0,W0). In addition, the subordination principle of solution operator
(Sα(t))t≥0 such that ∥Sα(t)∥L(X) ≤ M̂2 for t ∈ [0, b]. For phase space, we choose

H = e2s, s < 0, then l =
∫ 0

−∞ H(s)ds =
1

2
<∞, for t ∈ (−∞, 0], and determine

∥ϕ∥Bh
=

∫ 0

−∞
H(s) supθ∈[s,0] ∥ϕ(θ)∥L2ds.

Hence, (t, ϕ) ∈ [0, T ]×Bh, where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0]× [0, π]. Set

u(t)(x) = u(t, x), ρ(t, ϕ) = ρ1(t)ρ2(∥ϕ(0)∥),

we have

G (t, ϕ)(x) =

∫ 0

−∞
Υ1(θ)ϕ(θ)(x)dθ,

F (t, ϕ,H ϕ)(x) =

∫ 0

−∞
Υ2(t, x, θ)P1(ϕ(θ)(x))dθ + H ϕ(x),

and

Ik(ϕ)(x) =
∫ 0

−∞
Qk(θ)ϕ(θ)(x)dθ, k = 1, 2, ...,m,

where

H ϕ(x) =

∫ t

0

∫ 0

−∞
K1(s− θ)P2(ϕ(θ)(x))dθ ds,

By all these configurations, system (4.1)-(4.4) can be written in the theoretical
form of problem (1.1)-(1.3).
Suppose further that:

(i) the function ρi : [0,∞) to [0,∞), i = 1, 2 are continuous;
(ii) the function Υ1(t, x, θ) is continuous in [0, T ]× [0, π]× (−∞, 0]; and

Υ1(t, x, θ) ≥ 0; ∫ 0

−∞
Υ1(t, x, θ)dθ = p1(t, x) <∞.
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(iii) the functions Υi(t, x, θ) ≥ 0, i = 1, 2, are continuous in [0, T ] × [0, π] ×
(−∞, 0] and satisfy∫ 0

−∞
Υ2(t, x, θ)dθ = p1(t, x) <∞.

(∫ π

0

p21(t, x)dx
) 1

2

= m1(t) <∞,

(iv) the function k(t− s) is continuous in [0, T ] and k(t− s) ≥ 0, and∫ t

0

∫ s

−∞
k(s− θ)dθ ds = m2(t) <∞,

(v) the functions qk : R → R, k = 1, 2, ...,m are continuous and

di =

∫ 0

−∞
h(s)q2i (s)ds <∞, for i = 1, 2, ..., n.

(vi) the function P (.) is continuous and for each (0, x) ∈ (−∞, 0] × [0, π];

0 ≤ Pi(u(θ)(x)) ≤ ΘF

(∫ 0

−∞
e2s∥u(s, .)∥L2ds

)
with lim inf

r→∞

ΘF (r)

r
= Λ <∞,

where
ΘF , ΘF : [0,∞) → (0,∞) is a continuous and nondecreasing functions.

Thus, under all these conditions, we have∥∥∥A 1
2 G (t, ϕ1)−A 1

2 G (t, ϕ2)
∥∥∥
L2

≤

[∫ π

0

(∫ 0

−∞
Υ1(θ)(ϕ1(θ)− ϕ2(θ))(x)dθ

)2

dx

] 1
2

≤

(∫ 0

−∞
Υ2

1(θ)dθ

) 1
2
(∫ π

0

∫ 0

−∞
(ϕ1(θ)− ϕ2(θ))

2(x)dθ dx

) 1
2

≤

(∫ 0

−∞
Υ2

1(θ)dθ

) 1
2
(∫ 0

−∞

∫ π

0

(ϕ1(θ)− ϕ2(θ))
2(x)dx dθ

) 1
2

≤

(∫ 0

−∞
Υ2

1(θ)dθ

) 1
2
(∫ 0

−∞
e−2sθ. e2sθ

∫ π

0

(ϕ1(θ)− ϕ2(θ))
2(x)dx dθ

) 1
2

≤

(∫ 0

−∞
Υ2

1(θ)dθ

) 1
2
(∫ 0

−∞
e−2sθdθ

) 1
2

.sup−∞<θ≤0

{
esθ

(∫ π

0

(ϕ1(θ)− ϕ2(θ))
2(x)dx

) 1
2}

≤

(
−1

2s

∫ 0

−∞
Υ2

1(θ)dθ

)2

.sup−∞<θ≤0

{
e2s
∥∥∥ϕ1(θ)− ϕ2(θ)

∥∥∥
L2

}
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≤ WG ∥ϕ1 − ϕ2∥Bh
.

Therefore, hypotheses (H1) holds. Similarly, we have∥∥∥F (t, ϕ,Hϕ)
∥∥∥
L2

≤

[∫ π

0

{∫ 0

−∞
Υ2(t, x, θ)P1(ϕ(θ)(x))dθ

+

∫ t

0

∫ 0

−∞
K1(s− θ)P2(ϕ(θ)(x))dθ ds

}2

dx

] 1
2

≤

[∫ π

0

{∫ 0

−∞
Υ2(t, x, θ)ΘF (

∥∥ϕ(θ)(.)∥∥
L2)dθ

+

∫ t

0

∫ 0

−∞
k1(s− θ)ΘF (

∥∥ϕ(θ)(.)∥∥
L2)dθ ds

}2

dx

] 1
2

≤

[∫ π

0

{∫ 0

−∞
Υ2(t, x, θ)ΘF

(
sup−∞<θ≤0

{
e2s
∥∥ϕ(θ)∥∥∥

L2

})
dθ

+

∫ t

0

∫ 0

−∞
K1(s− θ)ΘF

(
sup−∞<θ≤0

{
e2s
∥∥ϕ(θ)∥∥∥

L2

})
dθ ds

}2

dx

] 1
2

≤

[∫ π

0

{∫ 0

−∞
Υ2(t, x, θ)P1(ϕ(θ)(x))dθ

}2

dx

] 1
2

ΘF (∥ϕ∥Bh

+

[∫ π

0

{∫ t

0

∫ 0

−∞
K1(s− θ)dθ ds

}2

dx

] 1
2

ΘF (∥ϕ∥Bh
)

≤
(∫ π

0

p21(t, x)dx
) 1

2

ΘF (∥ϕ∥Bh
+
(∫ π

0

q21(t)dx
) 1

2

ΘF (∥ϕ∥Bh
)

≤
[
m1(t) +

√
πm2(t)

]
ΘF (∥ϕ∥Bh

)

≤ mF (t)ΘF (∥ϕ∥Bh
).

Since ΘF : [0,∞) → (0,∞) is a continuous and non-decreasing function, we can
take m1(t) = m̄1(t) with a =

√
π and ξF (r) = ΘF (r) in (H2). If the bounds in

Step (1) are fulfilled, then model (4.1)-(4.4) has a mild solution on I .

6. Conclusion

In this article, we have been detailed the existence and controllability
for impulsive fractional neutral integro-differential systems with SDD conditions
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via sectorial operator in a Banach space. Further accurate, by utilizing the
fractional calculus, fractional powers of operators, and the Schaefer’s fixed point
theorem, we examine the IFNIDE with state dependent delay in a Banach space.
The fractional differential equations are every efficient to describe the real-life
phenomena; thus, it is essential to extend the present study to establish the other
qualitative and quantitative properties such as stability and controllability.

Acknowledgments : Authors would like to thank the referees and the editor
for their careful comments and valuable suggestions to improve this work.
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