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EXISTENCE AND UNIQUENESS OF SQUARE-MEAN
PSEUDO ALMOST AUTOMORPHIC SOLUTION FOR
FRACTIONAL STOCHASTIC EVOLUTION EQUATIONS
DRIVEN BY G-BROWNIAN MOTION

A.D. NAGARGOJE*, V.C. BORKAR, R.A. MUNESHWAR

ABSTRACT. In this paper, we will discuss existence of solution of square-
mean pseudo almost automorphic solution for fractional stochastic evolu-
tion equations driven by G-Brownian motion which is given as

6Dp ¥ = A(p)¥pdp + @(p, ¥p)dp + Y(p, Up)d (R),, + x(p, ¥p)dNp, p € R.

Furthermore, we also prove that solution of the above equation is unique by
using Lipschitz conditions and Cauchy-Schwartz inequality. Moreover, ex-
amples demonstrate the validity of the obtained main result and we obtain
the solution for an equation, and proved that this solution is unique.
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1. Introduction

Some results on the problem of existence and uniqueness of the square-mean
pseudo almost automorphic mild solutions for fractional differential equation and
stochastic evolution equations driven by G-Brownian motion have been discussed
by some authors which can be found in [2, 5, 6, 1, 4]. The main purpose of
this article is to discuss the existence and uniqueness of the square-mean pseudo
almost automorphic mild solutions for the following stochastic evolution equation
of fractional order driven by G-Brownianmotion (G-SEEF, in short)

0Dy, = A(p)Vdp + (p, Vp)dp + Y(p, Vp)d (N), + x(p, Vp)dR,, p € R (1)
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where A(p) : D(A(p)) C £3(Q2) — £4(Q) is densely closed linear operator, and
satisfies Acquistapace-Terrani conditions R, is a one dimensional G-Brownian
motion, the functions ®, T and x : £3(Q2) — L£2(Q) are jointly continuous.

Definition 1.1. Riemann—Liouville definition [7, 9, 8, 3]: For « € [n—1,n)
the a - derivative of f is

1 dvz [“ f(z)
Da = V- 7d
@) = 5 dt”/a (t — x)o—n+1 "
Definition 1.2. Caputo definition[7, 9, 8, 3]: For « € (n — 1,n) the « -
derivative of f is

1 Lof(r)

C Nna

DY f(t) = d

a tf() F(Oé_n)/a (t—T)O‘_"""l T
2. Preliminaries

Proposition 2.1. Ifn, € M3(0,7), then

£ (/()Tn,,d&p>2 =£ </0Tn§d(N)p> <% (/OTnﬁdp> .

Lemma 2.2. Let ¢(p,v) € SPAA(R x L3(Q),L3(Q)), and v,v € L3()). If
there exists a positive number L such that,

Elldlp.v) —dpv) IPSLlv—vlfpeR
then ¢(p,v) € SPAA(R, L3(2)) for any v € SPAA(R, L3(1)).
Definition 2.3. An F, progressively measurable process {\Ilp}pE R is called a

mild solution of the stochastic evolution equation of fractional order driven by
G-Brownianmotion, if it satisfies the equation

1 /P b(p,r) @M (r, V)
dr

U, =(p,s)¥ +

fca-m ) (-
P(p,r) T(”) (r,¥,)
—a—n) / —atl-n 4(X), @)
b(p,)x (”) (r,¥,)
a—n / —a+1—n dNr

foranyngandgeR.

For our convenience and further use we consider following assumptions:
(H1) The evolution family ¥(p,s) generated by A(p), and there exist M > 1
and 0 > 0 such that

| 9(p,r) | Me?™ p >

(H2) The functions ®(p, V) : R x L3(Q) — L£L3(Q),T(p,¥) : R x L3(Q) —

L£2.(2) and x(p,¥) : R x L3(Q) — L3(Q) are square-mean pseudo almost
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automorphic process in p € R. Moreover, ®, T and x satisfy the following
Lipschitz conditions for some positive constants £, Lo and L3 such that

€| B(p,v) — B(p,v) < LiE v —v

E|Y(p,v) = Y(p,v) P< LoE | v —v |2
and

€ | X(pal/) _X(p,U) ‘QS L3E | L |2a
for v,v € L3(Q) and p € R.

3. Main results

Theorem 3.1. If the assumptions (H1) and (H2) be satisfied then the equation
G-SEEF (1) has a unique square-mean pseudo almost automorphic mild solution
U € SPAA(R; £3(2)) provided that
3M2£1 30’74./\/12,52 30’72./\/[2,62
Y PR T
which can be explicitly expressed as follows:

B Y(p,) ( v,)
\iji a—n/ p—r)-oatl-n dr

wpr'f(”(r\ll)
- _n/

—a+1—-n

< 1.

d (X)

T

wprﬂm@m)
a—n —a+1l—n

Ny,

for each p € R.
Proof. As ¢(p,r) = ¥(p,s)¥(s,r), and hence we have

P(p, )@ (r, U,
\IIP: a—n/ —7“ —a+1—n dr

r (")r
- w” S, )

—TL
m o,
/ ¢prx @ )de
a—n

—a+1l—n

wprq)(")rkll)
—a—n) p—r)Tatl-n

z/JprT(”) r\Il)
a_n/ aR)

—a+1l—n

P s
r(—a—m/ (o=

=V, =9Y(p,q)¥ + dr

r

+
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Vp > < and ¢ € R, and hence ¥, given by (3) is a mild solution to (1).
Now for any ¥, € SPAA(R; £3(R)), define

L (et ()
v, =
—[ 14 F( Oé—n ( _7«)—O¢+1—n dr
P P(p,r) Y (r, ;)

—a—n) /oo Ep =arimn 4N
[

oo

Claim-I: ¥, SPAA(R E%(Q))
From (H?2), for any U, Y € £3(Q)) and all p € R, by using the Lemma 2.2,
we conclude that <I>(p,\I/ ), T(p,¥,), x(p,¥,) € SPAA(R, L3-(2)). So, there
exist ¢,r,( € SAA(R, L%(Q)) and v, 3,¢ € SBCy(R, L3(Q2)) such that ® =
b+ =r+B,x =C+gp. Hence,

_ 1 (o, 1) (") (1, Uy) + 4 (r, W)
-I\IIP—F - / (o= )t dr
1 Y(p,r) K(")(r \J )+B(”)(T, 7,.))
I'(—a—n) (p—r)-otl-n d{X),
1 wprcw( r) + o™ (r, ;)
+ I'(—a—n) (p—r)-atl-n dx;

1 P p(p,r)p ™ (r, 0,
(= >/m (p—r)-arion "

L[ e w)
/ ( d (N

p—T)_‘X""l_” < >7"

Mca—n) ) o (p-r) ot
Define
p (n)
o, =L [ Uenetit
Mca—n) ) (o)1=
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1 r qp(p,r)h(")(r,\llr)
o L G

(n)
AU, 1 / Y(p, )Y\ (r, ¥,) dr

T T(a—n) s (o)
(n)
el
a_n/ Zbgp,rw(”i:l‘l;)dm.

Claim 2: If ¥, then _I\I!p is square-mean pseudo almost automorphic.

For this it is sufficient to prove that IV, € SAA(R, £3(2)) and

AV, € SBCy(R, L3(€)). Thus, the following verification procedure is divided
into three steps.

Step 1. If p € R, then we have

wpr¢<"r@)d

a—n —a+1—n

n 1 /p Y(p; )’i(n)(r\y d<N>

p— )(,H—ln

(

(
1 O ISEICS TN " Ylpo,r)e " (r, By)
‘T e o / ;

€1, — IV, ‘2:

r

SR o) )w (p-ryottn
1 o P(po, r)E™ (r, U,
e | O A,
[ st )

Mma=m) [ (p=r) ot

<3¢ 1 /p (pr)cb("(r‘l’)dr

F(ca—n) Joo (p=r) ot
1 7 Y(po, ) (r, L) o
*m oo (=
(n)
38| fa /p wp” ajl‘l;)dmn
1 Po w(po r)ﬁ( )(7“‘1/) 2
o= el
(n)
] WT@“ LS
B 1 po w(po, )C( >( )dN 2.

Mo o (oo
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Then, let 8 =r — p+ po, we can get the following relation

M), 1" e e,

—a—n) p—r) atl-n IN—a-n)J_o (p—r)-otl-mn

_¢| PO w(po )9 (6 + p + po, ‘1’9+p+p0)d9
o PEEEE

I 1 po 'l/f(POaT)Qﬁ(n) (T’, \Ilr)dT |2

o) ()i

=£| 1 7o (o, 0)(6"™ (0 + p+ po, Worp1p,) — ¢ (r, 01)) dr|?

e . (o= r)oti—r |

Let {p,} be an arbitrary sequence of real numbers, with p,, — po as n — co. As
¢ € SBC(R, L3(2)) then we have

| (pO, ) | g | ¢ (7“ + Pn — val:[jT‘JrPn*PO) - d)(n)(/ra \I}T‘) ‘2_> 0,71 — 00,

= 0(po,7) | €M (r + pu = po, Wrgp,—po) — ™ (r, ) |
<[ ¢(por) | 1+ 1| 6™ Jloc)s
for every n sufficiently large. It is easy to note that

Po
[ | (o.r) | (1 || $ Hoo)d% < +0.

Then, by the Lebesgue dominated convergence theorem, we have
pPo

lim | (po,7) | € 1™ (r+ pp = po, Wrip,—py) — 0" (r, ¥,) = 0.

n—oo [_

As {pn}, be arbitrary sequence then we have
Po

lim | (poy) | €| 6™ (14 p = pos Wrgppy) — 6™ (1, ;) |2= 0.

P—P0
Together with all above estimations, we obtain

(n)
lim & | wp“b (. %) 4

pP—p0 —a—n) —otl-n
1 ¢(P07 T)QS( )(Ta \I/'f)

S 2_
Mo e (e 0

Let <&>L = (N), 4, po — (N),_,, foreach ¢ € R. Then it is easy to verify that

<&> is the quadratic variation process of the G-Brownian motion and identically
L
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distributed like (N),. As c =r — p+ po and by using Proposition 2.1 we have
1 p v
S ‘ w(p3 T) (T' )d

f—a=m /) o (p=ryorin 20
el i T
—g| F(—;—n) _’: w(POaL)K((’Z(_L:—)f;lpE;\I/Lﬂpo)d< o
e [ e S g,
B
_¥ " (o, )R, )

-n) ) s (p—r)Toti-n 8,
(

—£ | /PO 770 Lo, T ’{n)(r+p pO,\I/rer po)fﬁ( )(rvqu))d<&> |2
T(—a—n)(p—r) orin ,
< L_45 | /Po w var)("{(n)(r + P — Po, \II’FJFP*PO) B ﬁ(n)(r’ \Ijr))dT |2
- e |
The Cauchy—Schwarz inequality shows that

1 7 Y(p, )™ (r, ¥,
E‘F(_a_n) e ( ) at+l—n < >T’
_ 1 po ¢(Poa7“)ff(" (T v, )d<N> |2

e foe et

PO to
<.t | Y(po,r) | dT o | U(po,r) | €| K™+ p = po, Vst ppo)
- §

) d
K r—
(0 P dr .
By an analogous arguments pcrformed as above, we can show that
PO
dmn [ Lot Vg [ 600 11004 0= o)

— k™ (r,¥,) |2 dr— =0.

é‘*
Then, we obtain
. w p,7) /f(") (r,¥,.)
lim €& |
pgrf}o —a—n) —atl-n < >T
1 o w(pw)n( >(r, v,)

T(—a—n)) . (p—r)otin dp (R), |*= 0.
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As v =71 — p+ po then by using the proposition 2.1, we get

¢ ¥,)
OL—TL/ a+1n dNT

— 1 7 w(po,’l")c(n)(’l“,\llr)dN |2
I'(—a—n)/)_ o (p—r)-ati-n T
=& | # " w(po’b)c(n)(a+p_p07qu+P_ﬂo)dN
Ta =7 ) (o) i oo
1 2 P, I, T,)
Mam o (o
=& | _ P (po, )¢ n)(LjLP*pOa\IlHrp*Po)d&
Mo ) (o) i :
ro (n)
_ 1 ¢(p07r)< (’I‘, \I’r)dNT |2

Ta—n ) (p=r)=17

g [ U o Wrsy) — (O 0)
) D(—a—n)(p—r) -+

o [ L) LG4 o bray) €N Py iy

dR,. |2

~ [T(—a—n)( —r)eFi 2
g [7 1001 L0+ p = o, Wiy p) = € ) P
some( [ R S e )

Po
< [ ) P E L+ p = o W) = € W) [ dr

For shake of simplicity Let I'(—a —n)(p — )~ **1=" = ¢ and | ['(—a — n)(p —
r)—oz—i—l—n |2: 5

By an analogous arguments performed as above, we can show that

. v(p,7) C(" (r, V)
1 N,
pg%og| —a—n) / (p—r)-otl-n s
_ 1 po Q/J(POJ’ C(n)( )dN |2
Mo ) (s O

Hence,

Jim £ [0, — 1T, |>=
—po

which implies that II¥, is a stochastic continuous process.

Step 2. As ¢,r,( € SAA(R, L3-(Q))then for every sequence of real numbers
{rn}en @ subsequence {r,} such that, for some stochastic processes ¢,7,C :
R — £%(9)), we have

; (n) _ (n) 2__
nh—>r20 & ‘ ¢ (p + Tn, qu"(‘Tn) ¢ (pa \I/p) | 0
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and .
Jim €100 (o4, Wpir,) = 6 (6, 0,) =0,
lim & | H(n)(p + T, \Ilp+rn) - ,{(n)(p’ \I}P) |2:
n—oo
11_>II1 E ‘ /ﬁ(”)(p + Tn, \ij+'r ) - K(”) (p> \I]P) ‘2:
nh—>ngog | C(n) (IO + T, \I/p+7'n) - C(n) (p7 \I’P) |2: 0
and

dim €¢I (p+ 10, Upir,) = (M (p, ) P= 0,
Vp € Rand ¥(.) € £LZ(Q)). Let

__— 1 7 p(p, ) (1, 0,)
H\I’p_l'\(_a_n) /;oo (p ) at+l—-n dr
1 o p(p, 1)K (r, W)
+F(—a—n) /_oo (p—r)oti-n ak
1 o P(p, )¢ (r, 1)
+I‘( a_n)/oo (p— )aJrlndNT
Claim 3. AV, € SBCy(R, £2T(

By Step 1, we have AV, is stochastically continuous process. As v,08,¢ €
SBCy(R, £3(£2)) and the exponential dissipation property of 1(p,r), it gives
AV, is stochastically bounded and therefore AW, € SBC(R, £3%(12)). Hence, it
is sufficient to prove that

1 (7 )
lim — IE AV, |*dp— =
By the Cauchy—Schwarz inequahty and Lipschitz conditions in (H2), we eval-
uate the first term of the last inequality, as follows,

/ Ww(p.m) ”><r\If> 2 Y)) 4 12
a—n

_ 7") a+l—n

: e @0 B2
<Mt e PRSI

1 4
< ./\/12/ | e 0(p=r) | drg—*./ | e 9(p=7) | €| o) (r,¥,) — @(”)(r, Vo) |? dr
—0o0 —oo

2 P
< M(Sﬁl / e 0p—r)g | U, — Y |2 dTg

P 1 1
[m eﬂs(p*r)dréf* =%

According to



932 A.D. Nagargoje, V.C. Borkar, R.A. Muneshwar

we have
o) (n)
oz [ @) 0,
—a— TL ) at+l—n 4)
< 2£15u5|\11—y|2— (
ST v T
Moreover according to
P
/_OO 676(”4)(17'5% = %7
we get,
1 7 p(p,r) (X (r, W) = T, Y)) 2
€| IN(—a — _ ry—at+l-n d<N>7 |
n) (p 7“) (5)
—4 A 42
< ﬂsupg |0, — Y, |2
92 reR
Additionally according to
1
—26(p—r) -
[m dr£ 55"
we have
U(p,7) X(")(T ) = XM V) o e
aw,. |
_ 777, 77,) a+l—n
72./\/12 ) (6)
i adlat:d U, —
< —2 :lelg | Y, |
By equations (4), (5), and (6), it follows that,
M2£1 L74M2£2 L72M2£3
_ 2 _ 2
&17w, - W, < ( e R )EEEE“I’ %P e
and, therefore,
M2£1 L_4M2£2 L_2M2£3 1
g|-[\IIP_-IY;J‘%’PAAS< 5 T 5 Y- )|‘If—y\%PAA§-

Consequently, when

3M2£1 n 3L74M2£2 I 3L72M2£3
é 02 20

<1,
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T has a unique fixed point ¥, in SPAA(R L2 (Q)) such that T, = ¥,. Namely,

b(p, )@ (r, ;)
\Ilp: a—n ( —7” —a+1-n dr

r (”)r
- _n/ wEZ’ St an,
U
(h—

/ p,r) x(”)(r‘l’ )
O{*TL

—a+1—n
for all p € R, which shows that the G—SEEF (1) has a unique square-mean
pseudo almost automorphic mild solution. O

Ny,

4. Application

Now we will discuss the application of our main theorems. Let &/ C R™, which
is a bounded subset, with boundary 9/ € C? and is locally on one side of U.
Consider the following system

oDV (p, 0) = Alp, 0)¥(p, 0)dp + 2(p, ¥ (p, 0))dp + Y(p, ¥(p, 0))d(N),

+x(p; ¥(p, 0))dRy, p € R, (7)

> ni(e)mij(p, 06D ¥(p,0) = 0,p € R, , 0 € AU, (8)
i,j=1
let n(p) = (n1(0),n2(0),...,nn(0)) be the outer unit normal vector. Then, we
define the family of operators A(p, o) as follows,

n e e

Alp,0) = ]ZZI Py (mj(p, 9)@) +c(p,0),p € R0 €U,
R, is a two-sided standard one-dimensional G-Brownian motion associated with
the filtration F, = ¢ {®, — R,,u, 0 < p}, (V) is the quadratic variation process
of the G-Brownian motion X. In addition, m;;(%,j = 1,2, ....,n) and c satisfy the
following assumptions.
(H3) B
(1) As i,j = 1,2,...,n then m; = mj; Moreover, m;; € C'(R,L3(C(U)) N
Cy(R, L3 (CTU)) N SPAA(R, L% (L2(U))) for all 4,5 = 1,2,....,n,
c € C“(R L3(L2(U))) NCy(R, L2 (CU)) N SPAA(R, L3 (LY (U))) for some p €
(3
(2) As for (p,0) € R x U and i € R™ then 3 a positive number 4, such that
n
> mijlp,o)ming =6 [0 |,
ij=1
If the above assumptions hold then ¥(p, s) satisfying (H1) . For p € R, we

define an operator A(p) on L4 (L%(U)) by
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D(A(p)) = § ¥ € LE(L2WU)) = Y nil)mis(p, )5 D, ¥ (p,.) = 0,0n U

i,7=1

and A(p)¥ = A(p, 0)¥(p) for all U € D(A(p)). Thus, assumptions (H1)—(H3)
are satisfy and hence system (7) -(8) has a unique square-mean pseudo almost
automorphic mild solution, provided M is small enough.
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