References
- Abo-el-nour, N. and Alsheikh, F.A. (2009), "Reflection and refraction of plane quasi-longitudinal waves at an interface of two piezoelectric media under initial stresses", Arch. Appl. Mech., 79(9), 843-857. https://doi.org/10.1007/s00419-008-0257-y
- Abo-el-nour, N., Al-sheikh, F.A. and Al-Hossain, A.Y. (2012), "The reflection phenomena of quasi-vertical transverse waves in piezoelectric medium under initial stresses", Meccan., 47(3), 731-744. https://doi.org/10.1007/s11012-011-9485-2
- Achenbach, J.D. (1973), Wave Propagation in Elastic Solids, North Holland Pub., Amsterdam, The Netherlands.
- Bassiouny, E. and Sabry, R. (2013), "Fractional order two temperature thermo-elastic behavior of piezoelectric materials", J. Appl. Math. Phys., 1(5), 110. https://doi.org/10.4236/jamp.2013.15017
- Bullen, K.E. (1963), An Introduction to the Theory of Seismology, Cambridge University Press, U.K.
- Chandrasekharaiah, D.S. (1988), "A generalized linear thermoelasticity theory for piezoelectric media", Acta Mech., 71(1-4), 39-49. https://doi.org/10.1007/BF01173936
- Chandrasekharaiah, D.S. (1986), "Thermoelasticity with second sound: A review", Appl. Mech. Rev., 39(3), 355-376. https://doi.org/10.1115/1.3143705
- Chen, W.Q. (2000), "Three dimensional green's function for two-phase transversely isotropic piezothermoelastic media", ASME J. Appl. Mech., 67, 705. https://doi.org/10.1115/1.1328349
- Dhaliwal, R.S. and Sheroef, H.H. (1980), "Generalized thermoelasticity for anisotropic media", Q. Appl. Math., 1-8.
- Hetnarski, R.B. and Ignaczak, J. (1999), "Generalized thermoelasticity", J. Therm. Str., 22(4-5), 451-476. https://doi.org/10.1080/014957399280832
- Ikeda, T. (1996), Fundamentals of Piezoelectricity, Oxford University Press, New York, U.S.A.
- Kuang, Z.B. (2010), "Variational principles for generalized thermodiffusion theory in pyroelectricity", Acta Mech., 214(3-4), 275-289. https://doi.org/10.1007/s00707-010-0285-x
- Kuang, Z.B. and Yuan, X.G. (2011), "Reflection and transmission of waves in pyroelectric and piezoelectric materials", J. Sound Vibr., 330(6), 1111-1120. https://doi.org/10.1016/j.jsv.2010.09.026
- Kumar, R. and Gupta, V. (2013), "Plane wave propagation in an anisotropic thermoelastic medium with fractional order derivative and void", J. Thermoelast., 1(1), 21-34.
- Lord, H.W. and Shulman, Y. (1967), "The generalised dynamic theory of thermoelasticity", J. Mech. Phys. Sol., 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Majhi, M.C. (1995), "Discontinuities in generalized thermoelastic wave propagation in a semi-infinite piezoelectric rod", J. Technol. Phys., 36(3), 269-278.
- Mindlin, R.D. (1974), "Equations of high frequency vibrations of thermopiezoelectric crystal plates", J. Sol. Struct., 10(6), 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
- Meral, F.C. and Royston, T.J. (2009), "Surface response of a fractional order viscoelastic halfspace to surface and subsurface sources", J. Acoust. Soc. Am., 126(6), 3278-3285. https://doi.org/10.1121/1.3242351
- Meral, F.C., Royston, T.J. and Magin, R.L. (2011), "Rayleigh-lamb wave propagation on a fractional order viscoelastic plate", J. Acoust. Soc. Am., 129(2), 1036-1045. https://doi.org/10.1121/1.3531936
- Meerschaert, M.M. and McGough, R.J. (2014), "Attenuated fractional wave equations with anisotropy", J. Vibr. Acoust., 136(5), 050902.
- Nowacki, W. (1978), "Some general theorems of thermopiezoelectricity", J. Therm. Str., 1(2), 171-182. https://doi.org/10.1080/01495737808926940
- Nowacki, W. (1979), Foundation of Linear Piezoelectricity, Interactions in Elastic Solids, Springer, Wein.
- Othman, M.I.A., Atwa, S.Y., Hasona, W.M. and Ahmed, E.A.A. (2015), "Propagation of plane waves in generalised piezo-thermoelastic medium: Comparison of different theories", J. Inn. Res. Sci. Eng. Technol., 4(7).
- Rao, S.S. and Sunar, M. (1993), "Analysis of thermopiezoelectric sensors and acutators in advanced intelligent structures", AIAA J., 31(7), 1280-1286. https://doi.org/10.2514/3.11764
- Scott, N.H. (1996), "Energy and dissipation of inhomogeneous plane waves in thermoelasticity", Wave Mot., 23(4), 393-406. https://doi.org/10.1016/0165-2125(96)00003-0
- Sherief, H.H., El-Sayed, A.M.A. and El-Latief, A.A. (2010), "Fractional order theory of thermoelasticity", J. Sol. Struct., 47(2), 269-275. https://doi.org/10.1016/j.ijsolstr.2009.09.034
- Sur, A. and Kanoria, M. (2014), "Fractional heat conduction with finite wave speed in a thermo-visco-elastic spherical shell", Lat. Am. J. Sol. Struct., 11(7), 1132-1162. https://doi.org/10.1590/S1679-78252014000700005
- Vashishth, A.K. and Sukhija, H. (2014), "Inhomogeneous waves at the boundary of an anisotropic piezothermoelastic medium", Acta Mech., 225(12), 3325-3338. https://doi.org/10.1007/s00707-014-1139-8
- Vashishth, A.K. and Sukhija, H. (2015), "Reflection and transmission of plane waves from fluidpiezothermoelastic solid interface", Appl. Math. Mech., 36(1), 11-36. https://doi.org/10.1007/s10483-015-1892-9