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APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH

DEVIATED ARGUMENT

ALKA CHADHA∗ AND DWIJENDRA N. PANDEY

Abstract. This paper investigates the existence of mild solution for a frac-
tional integro-differential equations with a deviating argument and nonlocal

initial condition in an arbitrary separable Hilbert space H via technique
of approximations. We obtain an associated integral equation and then
consider a sequence of approximate integral equations obtained by the pro-
jection of considered associated nonlocal fractional integral equation onto

finite dimensional space. The existence and uniqueness of solutions to
each approximate integral equation is obtained by virtue of the analytic
semigroup theory via Banach fixed point theorem. Next we demonstrate

the convergence of the solutions of the approximate integral equations to
the solution of the associated integral equation. We consider the Faedo-
Galerkin approximation of the solution and demonstrate some convergence
results. An example is also given to illustrate the abstract theory.
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1. Introduction

In recent few decades, researchers have developed great interest in fractional
calculus due to its broad applicability in science and engineering. The tool of
fractional calculus has been available and applicable to deal with many physical
and real world problems such as anomalous diffusion process, traffic flow, non-
linear oscillation of earthquake, real system characterized by power laws, critical
phenomena, scale free process, describe viscoelastic materials and many others.
The details on the theory and its applications can be found in [1]-[4]. The exis-
tence of the solution for the differential equations with nonlocal conditions has
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been investigated widely by many authors as nonlocal conditions are more real-
istic than the classical initial conditions such as in dealing with many physical
problems. Concerning the developments in the study of nonlocal problems, we
refer to [6]-[16] and references given therein.

To the solvability of evolution problems in the time domain, we have var-
ious approaches, namely, the evolution family approach and an approach us-
ing finite-dimensional approximations known as Faedo-Galerkin approximations.
The Faedo-Galerkin approach may be used for the study of more regular solu-
tions, imposing higher regularity on the data. In [20], author has extended the
results of the [19] and considered the Faedo-Galerkin approximations of the so-
lutions for functional Cauchy problem in a separable Hilbert space with the help
of analytic semigroup theory and Banach fixed point theorem. In [21], authors
have studied the Faedo-Galerkin approximations of the solutions to a class of
functional integro-differential equation extended the results of [20]. In [8], the
Faedo-Galerkin approximations of the mild solution to non-local history-valued
retarded differential equations have been obtained by authors. In [9], authors
have established the existence of the mild solution and approximations of mild
solutions via technique of Faedo-Galerkin approximations and analytic semi-
group theory. In [28], authors have considered an fractional differential equation
and studied the Faedo-Galerkin approximations of the solutions for fractional
differential equation. In [26], the existence and approximations of the mild so-
lution to fractional differential equation with deviated argument via technique
of Faedo-Galerkin approximations have been obtained by authors. The Faedo-
Galerkin approximations of solutions for fractional integro-differential equation
have been considered by authors in [30]. For the Faedo-Galerkin approximation
of solutions, we refer to papers [8]-[9], [21]-[31].

The purpose of this work is to establish the approximation of the solution for
following nonlocal integro-differential equation with a deviating argument in a
separable Hilbert space (H, ∥ · ∥H , (·, ·)H)

cDq
0,tx(t) +Ax(t) = f(t, xt, x(a(x(t), t))) +

∫ t

0

b(t, s)g(s, x(s), xs)ds,

0 ≤ t ≤ T0 <∞, 0 < T0 <∞, (1)

h(x) = ϕ, on [−r, 0], r > 0, (2)

where 0 < q < 1, cDq
0,t is the generalized fractional derivative of order q in

Caputo sense with lower limit 0. For x ∈ C([0, T0];H), xt : [−r, 0] → H is
defined as xt(θ) = x(t + θ) for θ ∈ [−r, 0]. In (1), A : D(A) ⊂ H → H is a
closed, positive definite and self adjoint linear operator with dense domain D(A).
We assume that −A generates an analytic semigroup of bounded linear operators
on H. The functions f : [0, T0]×C([−r, 0],H)×H → H, a : H× [0, T0] → [0, T0],
b : [0, T0]×[0, T0] → R, g : [0, T0]×H×C([−r, 0], H) → H and h : C([−r, 0],H) →
C([−r, 0], H) are appropriate functions to be mentioned later. For more details
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on differential equation with deviated argument, we refer to papers [17]-[18], [26]
and references cited therein.

The organization of the article is as follows: Section 2 provides some basic
definitions, lemmas and theorems as preliminaries as these are useful for proving
our results. We firstly obtain an integral equation associated with (1). A mild
solution of equation (1) is defined as a solution of associated integral equation.
We consider a sequence of approximate integral equations. Section 3 proves
the existence and uniqueness of the approximate solutions by using analytic
semigroup and fixed point theorem. In section 4, we show the convergence of
the solution to each of the approximate integral equations with the limiting
function which satisfies the associated integral equation and the convergence of
the approximate Faedo-Galerkin solutions will be shown in section 5. Section 5
gives an example.

2. Preliminaries and Assumptions

Some basic definitions, theorems, lemmas and assumptions which will be used
to prove existence result, are stated in this section.
Throughout the work, we assume that (H, ∥ · ∥H , (·, ·)H) is a separable Hilbert
space. The symbol C([0, T0],H) stands for the Banach space of all the con-
tinuous functions from [0, T0] into H equipped with the norm ∥ z(t)∥C :=
supt∈[0,T0] ∥ z(t)∥H and Lp((0, T0),H) stands for Banach space of all Bochner-

measurable functions from (0, T0) to H with the norm

∥ z∥Lp := (

∫
(0,T0)

∥ z(s)∥pHds)
1/p.

Since −A is the infinitesimal generator of an analytic semigroup of bounded
linear operators {T (t); t ≥ 0}. Therefore, there exist constants C > 0 and ω ≥ 0
such that ∥ T (t)∥ ≤ Ceωt, for t ≥ 0. In addition, we note that

∥ dj

dtj
T (t)∥ ≤Mj , for t > t0 and t0 > 0, j = 1, 2, (3)

where Mj are some positive constants. Henceforth, without loss of generality,
we may assume that T (t) is uniformly bounded by M i.e., ∥ T (t)∥ ≤ M and
0 ∈ ρ(−A) which means that −A is invertible. This permits us to define the
positive fractional power Aα as closed linear operator with domain D(Aα) ⊆ H
for α ∈ (0, 1]. Moreover, D(Aα) is dense in H with the norm

∥ y∥α := ∥ Aαy∥, ∀ y ∈ D(Aα). (4)

Hence, we signify the space D(Aα) by Hα endowed with the α-norm (∥ · ∥α).
It is easy to show that Hα is a Banach space with norm ∥ · ∥α [35]. Also, we
have that Hκ ↪→ Hα for 0 < α < κ and therefore, the embedding is continuous.
Then, we define H−α = (Hα)

∗, for each α > 0. The space H−α stands for the
dual space of Hα, is a Banach space with the norm ∥ z∥−α = ∥ A−αz∥. For
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additional parts on the fractional powers of closed linear operators, we refer to
book by Pazy [35].

Lemma 2.1 ([35]). Let −A be the infinitesimal generator of an analytic semi-
group {T (t)}t≥0 such that ∥ T (t)∥ ≤M , for t ≥ 0 and 0 ∈ ρ(−A). Then,

(i) For 0 < α ≤ 1, Hα is a Hilbert space.
(ii) The operator AαT (t) is bounded for every t > 0 and

∥ AT (t)∥ ≤ Mt−1, (5)

∥ AαT (t)∥ ≤ Mαt
−α. (6)

Now, we state some basic definitions and properties of fractional calculus.

Definition 2.2 ([3]). The Riemann-Liouville fractional integral operator J of
order q > 0 with lower point 0, is defined by

Jq
0,tF (t) =

1

Γ(q)

∫ t

0

(t− s)q−1F (s)ds, (7)

where F ∈ L1((0, T0),H).

Definition 2.3 ([3]). The Riemann-Liouville fractional derivative is given by

RLDq
0,tF (t) = Dδ

tJ
δ−q
0,t F (t), δ − 1 < q < δ, δ ∈ N, (8)

where Dδ
t = dδ

dtδ
, F ∈ L1((0, T0), H), Jδ−q

0,t ∈ W δ,1((0, T0),H). Here the nota-

tion W δ,1((0, T0),H) stands for the Sobolev space defined as

W δ,1((0, T0), H) = {y ∈ H : ∃ z ∈ L1((0, T0),H) : y(t) =
δ−1∑
j=0

dj
tj

j!

+
tδ−1

(δ − 1)!
∗ z(t), t ∈ (0, T0)}. (9)

Note that z(t) = yδ(t), dj = yj(0).

Definition 2.4 ([3]). The Caputo fractional derivative is given by

cDq
0,tF (t) =

1

Γ(δ − q)

∫ t

0

(t− s)δ−q−1F δ(s)ds, (10)

for δ − 1 < q < δ, δ ∈ N, where F ∈ L1((0, T0), H) ∩ Cδ−1((0, T0), H).

Let C0 := C([−r, 0],H) be the collection of continuous mappings from [−r, 0]
into H equipped with the supremum norm ∥y∥0 := supt∈[−r,0] ∥y(t)∥ for y ∈ C0.

In addition, Ct := C([−r, t],H) be the Banach space of all H-valued continuous
functions on [−r, t] endowed with the supremum norm ∥y∥t := sups∈[−r,t] ∥y(s)∥
for each y ∈ Ct and t ∈ (0, T0] and the space of all continuous functions from
[−r, t] into Hα denoted by Cα

t , is a Banach space with the supremum norm
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∥y∥t,α := sups∈[−r,t] ∥Aαy(s)∥, for each y ∈ Cα
t .

For 0 ≤ α < 1, we define

Cα−1
t := {x ∈ Cα

t : ∥ x(τ)− x(s)∥ ≤ L|τ − s|, for all τ, s ∈ [−r, t]}, (11)

where L > 0 is a appropriate constant to be defined later.

Now, we turn to the following fractional differential equations with nonlocal
conditions as

cDq
tx(t) = −Ax(t) + F (t, xt, x(a(x(t), t)))

+

∫ t

0

b(t, s)g(s, x(s), xs)ds, t ∈ [0, T0], h(x) = ϕ, on [−r, 0].(12)

We give few examples of function h as

(1) Let w ∈ L1(0, r) be such that W =
∫ r

0
w(s)ds ̸= 0. Let

h(ς) =

∫ 0

−r

w(−s)ς(s)ds, ς ∈ Cα
0 . (13)

(ii) Let −r ≤ t1 < t2 < · · · < tp ≤ 0, ki ≥ 0 and K =
∑p

i=1 ki ̸= 0. Let

h(ς) =

p∑
i=1

kiς(ti), ς ∈ Cα
0 ,

h(ς) =

p∑
i=1

ki
ci

∫ ti

ti−ci

ς(s)ds, ς ∈ Cα
0 , (14)

where ci ≥ 0.

If we take ψ ∈ Cα
0 defined as ψ(θ) ≡ ϕ for all θ ∈ [−r, 0] and G : Cα

0 → Cα
0 given

by G(y)(θ) ≡ h(y) for all θ ∈ [−r, 0] and y ∈ Cα
0 . Then the condition h(y) =

ϕ is equivalent to the condition G(y) = ψ. Thus, the functional differential
equation with a more general nonlocal history condition may be considered which
is illustrated as follows,

cDq
tx(t) = −Ax(t) + F (t, xt, x(a(x(t), t))) +

∫ t

0

b(t, s)g(s, x(s), xs)ds, t ∈ (0, T0],

G(x) = ψ, on [−r, 0]. (15)

which includes (12). For example,

cDq
tx(t) = −Ax(t) + F (t, xt, x(a(x(t), t)))

+

∫ t

0

b(t, s)g(s, x(s), xs)ds, t ∈ [0, T0], x(t) = ψ(t), on [−r, 0].

is a particular case of (15). Thus, the problem (12) and (15) are equivalent.
Next, we make the following assumptions:
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(A1) A is a closed, densely defined, positive definite and self-adjoint linear
operator from D(A) ⊂ H into H. We assume that operator A has the
pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm ≤ · · · , (16)

with λm → ∞ as m → ∞ and corresponding complete orthonormal
system of eigenfunctions {χj}, i.e.,

Aχj = λjχj , and < χl, χj >= δlj , (17)

where

δlj =

{
1, j = l,

0, otherwise.

(A2) (i) There exists a function k ∈ Cα
t such that h(k) = ϕ, for all t ∈ [−r, 0].

We assume that h is Lipschitz continuous function on C([−r, 0], D(Aα)).
(ii) The function k(t) ∈ D(Aα) for each t ∈ [−r, 0] and k is locally Hölder
continuous with exponent 1 on [−r, 0] i.e. there exists a constant Lk > 0
such that

∥k(t1)− k(t2)∥ ≤ Lk|t1 − t2|, ∀ t1, t2 ∈ [−r, 0]. (18)

(A3) The nonlinear function f : [0, T0]×Cα
0 ×Hα−1 → H is Lipschitz contin-

uous and there exist constants Lf > 0 and µ1 ∈ (0, 1] such that

∥ f(t, x1, y1)−f(s, x2, y2)∥ ≤ Lf [|t− s|µ1 +∥ x1−x2∥0,α+∥ y1−y2∥α−1], (19)

for all (t, x1, y1), (s, x2, y2) ∈ [0, T0] × BR(Cα
0 , k̃) × BR(Hα−1, k̃). Here,

BR(Z, k̃) = {z ∈ Z, ∥z − k̃∥Z ≤ R} and Z is a Banach space and R > 0

is a constant to be defined later. The function k̃ is defined by

k̃(t) =

{
k(t), t ∈ [−r, 0],

k(0), t ∈ [0, T0].
(20)

(A4) The function a : Hα × [0, T0] → [0, T0] is continuous function and there
exist constants La > 0 and µ2 ∈ (0, 1] such that

|a(x1, t1)− a(x2, t2)| ≤ La[∥ x1 − x2∥α + |t1 − t2|µ2 ], (21)

for all (x1, t1), (x2, t2) ∈ BR(Hα, k̃)× [0, T0] and a(·, 0) = 0.
(A5) g : [0, T0] × Hα × Cα

0 → H is continuous function and there exists a
positive constant Lg such that

∥ g(t, x1, y1)− g(t, x2, y2)∥ ≤ Lg[∥ x1 − x2∥α + ∥y1 − y2∥0,α], (22)

for all (x1, y1), (x2, y2) ∈ BR(Hα, k̃)× BR(Cα
0 , k̃) and t ∈ [0, T0].

Now, we provide the definition of mild solution for the nonlocal system (1)-(2).
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Definition 2.5. A continuous function x : [0, T0] → H is said to be a mild
solution for the system (1)-(2) if x ∈ Cα

T0
∩ Cα−1

T0
and the following integral

equation

x(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)f(s, xs, x(a(x(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)

∫ s

0
b(s, τ)g(τ, x(τ), xτ )dτds t ∈ [0, T0],

(23)

is verified.
The operator Sq(t) and Tq(t) are defined as follows:

Sq(t)x =

∫ ∞

0

ζq(ξ)T (tqξ)xdξ,

Tq(t)x = q

∫ ∞

0

ξζq(ξ)T (t
qξ)xdξ,

where ζq(ξ) =
1
q ξ

1−1/q × ψq(ξ
− 1

q ) is a a probability density function defined on

(0,∞) i.e., ζq(ξ) ≥ 0,
∫∞
0
ζq(ξ)dξ = 1 and

ψq(ξ) =
1

π

∞∑
n=1

(−1)n−1ξ−nq−1Γ(nq + 1)

n!
sin(nπq), ξ ∈ (0,∞).

Lemma 2.6 ([11]). If −A is the infinitesimal generator of analytic semigroup
of uniformly continuous bounded operators. Then,
(1) The operator Sq(t), t ≥ 0 and Tq(t), t ≥ 0 are bounded linear operators.

(2) ∥ Sq(t)y∥ ≤M∥ y∥, ∥ Tq(t)y∥ ≤ qM
Γ(1+q)

∥y∥ and ∥ AαTq(t)y∥ ≤ qMαΓ(2−α)t−qα

Γ(1+q(1−α))
∥ y∥,

for any y ∈ H.
(3)The families {Sq(t) : t ≥ 0} and {Tq(t) : t ≥ 0} are strongly continuous.
(4)If T (t) is compact, then Sq(t) and Tq(t) are compact operators for any t > 0.

3. Approximate Solutions and Convergence

In this section, we study the existence of approximate solutions for the system
(1)-(2).
Let Hn be the finite dimensional subspace of H spanned by {χ0, χ1, · · · , χn}
and Pn : H → Hn be the corresponding projection operator for n = 0, 1, 2, · · · , .
We define

fn : [0, T0]× C([−r, 0],H)×H → H, (24)

by

fn(t, xt, x(a(x(t), t))) = f(t, Pnxt, P
nx(a(x(t), t))), (25)

and

gn : [0, T0]×H × C([−r, 0],H) → H, (26)

by

gn(t, x(t), xt) = g(t, Pnx(t), Pnxt). (27)
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We choose T , 0 < T ≤ T0 sufficiently small such that

T < {2R
3

[
(1− α)Γ(1 + q(1− α))

Mα(Nf +Gg)Γ(2− α)
]}

1
q(1−α) , (28)

∥ [Sq(t)− I]k̃(0)∥α <
R

3
, (29)

Θ =
MαΓ(2− α)T q(1−α)

(1− α)Γ(1 + q(1− α))
[Lf (2 + LLa) + 2bTLg] < 1. (30)

Now, we consider

BR = BR(Cα
T ∩ Cα−1

T , k̃) = {y ∈ Cα
T ∩ Cα−1

T : ∥ y − k̃∥T,α ≤ R}. (31)

By the assumptions (A3)− (A4), we have that f is continuous on [0, T ]. There-
fore, there exist a positive constant Nf such that

Nf = Lf [T
µ1 +R(1+LLa)+LLaT

µ2 ]+N, where N = ∥ f(0, k̃0, k̃(0))∥, (32)

with

∥ f(t, xt, x(a(x(t), t)))∥ ≤ Nf , x ∈ H, t ∈ [0, T ]. (33)

Similarly with the help of the assumption (A5), we can show that ∥ g(t, x, xt)∥ ≤
2LgR + ∥ g(t, k̃(0), k̃0)∥ = Ng. Therefore, we can indicate effectively that Gg =

bTNg, where bT = supt∈[0,T ]

∫ T

0
|b(t, τ)|dτ .

Let us consider the operator Aα : Cα
t → Ct defined by (Aαy)(t) = Aα(y(t)) and

(Pnxt)(s) = Pn(x(t + s)), for all s ∈ [−r, 0] and t ∈ [0, T ]. We consider the
operator Qn : BR → BR defined by

(Qnx)(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)fn(s, xs, x(a(x(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gnx)(s)ds, t ∈ [0, T ],

(34)

for each x ∈ BR, where Gnx(t) =
∫ t

0
b(t, s)gn(s, x(s), xs)ds.

Theorem 3.1. Suppose (A1)-(A5) holds and k(t) ∈ D(A) for all t ∈ [−r, 0].
Then, there exists a unique xn ∈ BR such that Qnxn = xn for each n =
0, 1, 2, · · · , and xn satisfies the following approximate integral equation

xn(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gnxn)(s)ds, t ∈ [0, T ].

(35)

Proof. To demonstrate the theorem, we first need to show that Qnx ∈ Cα
T ∩C

α−1
T .

It is easy to show thatQn : Cα
T → Cα

T by using the fact that f and g are continuous

function. Now, it remains to show thatQnx ∈ Cα−1
T . For t, τ ∈ [−r, 0] with t > τ ,

we have Qnx ∈ Cα−1
T for x ∈ Cα−1

T by using fact that k is Hölder continuous
with exponent 1 i. e., Lipschitz continuous on [−r, 0].
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For x ∈ Cα−1
T , 0 < τ < t < T , then we have

∥ Qnx(t)−Qnx(τ)∥α−1

≤ ∥ [Sq(t)− Sq(τ)]k̃(0)∥α−1

+

∫ τ

0

∥ (t− s)q−1Tq(t− s)− (τ − s)q−1Tq(τ − s)∥α−1∥ fn(s, xs, x(a(x(s), s)))∥ds

+

∫ t

τ

∥(t− s)q−1Tq(t− s)∥α−1∥ fn(s, xs, x(a(x(s), s)))∥ds,

+

∫ τ

0

∥ (t− s)q−1Tq(t− s)− (τ − s)q−1Tq(τ − s)∥α−1∥ (Gnx)(s)∥ds

+

∫ t

τ

∥(t− s)q−1Tq(t− s)∥α−1∥ (Gnx)(s)∥ds.

From the first term of above inequality, we have

[Sq(t)− Sq(τ)]A
α−1k̃(0) =

∫ ∞

0

ζq(ξ)[T (tqξ)− T (τ qξ)]Aα−1k̃(0)dξ, (36)

Also, we have that for each x ∈ H

[T (tqξ)− T (τ qξ)]x =

∫ t

τ

d

ds
T (sqξ)xds =

∫ t

τ

qξsq−1AT (sqξ)xds. (37)

Therefore, we estimate the first term as∫∞
0
ζq(ξ)∥T (tqξ)− T (τ qξ)∥∥ Aα−1k̃(0)∥dξ

≤
∫ ∞

0

ζq(ξ)[

∫ t

τ

∥ d
ds

T (sqξ)∥ds]∥ u0∥α−1dξ,

≤
∫ ∞

0

ζq(ξ)[M1(t− τ)]∥ k̃(0)∥α−1dξ,

≤ K1(t− τ)

∫ ∞

0

ζq(ξ)dξ,

= K1(t− τ), (38)

where K1 =M1∥ k̃(0)∥α−1. The second integrals is estimated as∫ τ

0

∥ (t− s)q−1Tq(t− s)− (τ − s)q−1Tq(τ − s)∥α−1∥ fn(s, xs, x(a(x(s), s)))∥ds

≤
∫ τ

0

∫ ∞

0

ζq(ξ)∥ [
d

dς
T ((ς − s)qξ)|ς=t −

d

dς
T ((ς − s)qξ)|ς=τ ]A

α−2∥

×∥ fn(s, xs, x(a(x(s), s)))∥dξds,

≤
∫ τ

0

∫ ∞

0

ζq(ξ)[

∫ t

τ

∥ Aα−2 d
2

dς2
T ((ς − s)qξ)∥dς]Nfdξds,

≤
∫ τ

0

∫ ∞

0

ζq(ξ)[∥ Aα−2∥M2(t− τ)]Nfdξds,

≤ K2(t− τ), (39)

where K2 = ∥ Aα−2∥M2NfT . The third integrals is estimated as∫ t

τ

∥(t− s)q−1Tq(t− s)∥α−1∥ fn(s, xs, x(a(x(s), s)))∥ds
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≤
∫ t

τ

∫ ∞

0

ζq(ξ)∥ [q(t− s)q−1ξAT ((t− s)qξ)]Aα−2∥∥ fn(s, xs, x(a(x(s), s)))∥ds,

≤
∫ t

τ

∫ ∞

0

ζq(ξ)∥
d

dς
T ((ς − s)qξ)|ς=tA

α−2∥Nfdξds,

≤ K3(t− τ), (40)

where K3 =M1∥ Aα−2∥Nf . Similarly, we estimate forth integral as∫ τ

0

∥ (t− s)q−1Tq(t− s)− (τ − s)q−1Tq(τ − s)∥α−1∥ (Gnx)(s)∥ds

≤ K4(t− τ), (41)

where K4 = ∥ Aα−2∥M2TGg and∫ t

τ

∥(t− s)q−1Tq(t− s)∥α−1∥ (Gnx)(s)∥ds ≤ K5(t− τ), (42)

where K5 =M1∥ Aα−2∥Gg.
Thus, from the inequality (38) to (42), we obtain that

∥ (Qnx)(t)− (Qnx)(τ)∥α−1 ≤ L(t− τ), (43)

for a positive suitable constant L =
∑5

l=1Kl. Therefore, we conclude that

(Qnx) ∈ Cα−1
T . Hence, we deduce that the operator Qn : Cα−1

T → Cα−1
T is well

defined map.
Next, we prove that Qn : BR → BR. For 0 ≤ t ≤ T and x ∈ BR, we get that

∥ (Qnx)(t)− k̃(0)∥α

≤ ∥ [Sq(t)− I]k̃(0)∥α +

∫ t

0

∥ (t− s)q−1Tq(t− s)fn(s, xs, x(a(x(s), s)))∥αds

+

∫ t

0

∥ (t− s)q−1Tq(t− s)(Gnx)(s)∥αds,

≤ ∥ [Sq(t)− I]k̃(0)∥α +
qMαNfΓ(2− α)

Γ(1 + q(1− α))

∫ t

0

(t− s)q(1−α)−1ds

+
qMαGgΓ(2− α)

Γ(1 + q(1− α))

∫ t

0

(t− s)q(1−α)−1ds,

≤ ∥ [Sq(t)− I]k̃(0)∥α +
MαNfΓ(2− α)T q(1−α)

(1− α)Γ(1 + q(1− α))
+
MαGgΓ(2− α)T q(1−α)

(1− α)Γ(1 + q(1− α))
.

(44)

From the inequalities (28) and (44), we conclude that Qn(BR) ⊂ BR. Finally,
we will show that Qn is a contraction map. For x, y ∈ BR and 0 ≤ t ≤ T , we have

∥ (Qnx)(t)− (Qny)(t)∥α

≤
∫ t

0

∥ (t− s)q−1AαTq(t− s)∥∥fn(s, xs, x(a(x(s), s)))− fn(s, ys, y(a(y(s), s)))∥ds
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+

∫ t

0

∥(t− s)q−1AαTq(t− s)∥∥ (Gnx)(s)− (Gny)(s)∥ds. (45)

We have the following inequalities:

∥fn(s, xs, x(a(x(s), s)))−fn(s, ys, y(a(y(s), s)))∥ ≤ Lf [2+LLa]∥ x−y∥T,α, (46)

and

∥ (Gnx)(s)− (Gny)(s)∥ ≤
∫ s

0

|b(s, τ)|∥ g(τ, x(τ), xτ )− g(τ, y(τ), yτ )∥dτ,

≤ 2bTLg∥ x− y∥T,α. (47)

Using (46)-(47) in (45), we get,
∥ (Qnx)(t)− (Qny)(t)∥α

≤ qMαΓ(2− α)

Γ(1 + q(1− α))
Lf [2 + LLa]∥ x− y∥T,α

∫ t

0

(t− s)q(1−α)−1ds

+
qMαΓ(2− α)

Γ(1 + q(1− α))
(2bTLg)∥ x− y∥T,α

∫ t

0

(t− s)q(1−α)−1ds,

≤ [
MαΓ(2− α)T q(1−α)

(1− α)Γ(1 + q(1− α))
Lf [2 + LLa] +

MαΓ(2− α)T q(1−α)

(1− α)Γ(1 + q(1− α))
(2bTLg)]

×∥ x− y∥T,α. (48)

From the inequality (30), we get

∥ (Qnx)(t)− (Qny)(t)∥α < Θ∥ x− y∥T,α, (49)

with Θ < 1. Therefore, it implies that the map Qn is a contraction map i.e.
Qn has a unique fixed point xn ∈ BR i.e., Qnxn = xn and xn satisfies the
approximate integral equation

xn(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gnxn)(s)ds, t ∈ [0, T ].

(50)

Hence, the proof of the theorem is completed. �

Lemma 3.2. Assume that hypotheses (A1)-(A5) are satisfied. If k(t) ∈ D(A)
for each t ∈ [−r, 0], then xn(t) ∈ D(Aυ) for all t ∈ [−r, T ] with 0 ≤ υ < 1.

Proof. If t ∈ [−r, 0], then results are obvious. Thus, it remains to show results
for t ∈ [0, T ]. From Theorem (3.1), we have that there exists a unique xn ∈
B ⊂ Cα

T ∩ Cα−1
T such that xn satisfy the integral equation (35). Theorem 2.6.13

in Pazy [35] implies that T (t) : H → D(Aυ) for t > 0 and 0 ≤ υ < 1 and for
0 ≤ υ ≤ η < 1, D(Aη) ⊆ D(Aυ). It is easy to see that Hölder continuity of xn
can be established using the similar arguments from equation (38)-(42). Also
from Theorem 1.2.4 in Pazy [35], we have that T (t)x ∈ D(A) if x ∈ D(A). The
result follows from these facts and D(A) ⊆ D(Aυ) for 0 ≤ υ ≤ 1. This completes
the proof of Lemma. �
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Corollary 3.3. Suppose that (A1)-(A5) are satisfied. If k(t) ∈ D(A), ∀ t ∈
[−r, 0], then for any t ∈ [−r, T ], there exists a constant U0 independent of n
such that

∥Aυxn(t)∥ ≤ U0, n = 1, 2, 3, · · · ,
with 0 < α < υ < 1.

Proof. Let k(t) ∈ D(A) for every t ∈ [−r, 0]. For t ∈ [−r, 0], applying Aυ on the
both the sides of (35) and obtaining,

∥Aυxn(t)∥ ≤ ∥k̃(t)∥υ ≤ ∥k̃∥0,υ, ∀ t ∈ [−r, 0].
For t ∈ (0, T ], we apply Aυ on the both the sides of (35) and get
∥ Aυxn(t)∥

≤ ∥ AυSq(t)k̃(0)∥+
∫ t

0

(t− s)q−1∥AυTq(t− s)∥

∥ fn(s, (xn)s, xn(a(xn(s), s)))∥ds+
∫ t

0

(t− s)q−1∥AυTq(t− s)∥∥ Gnxn(s)∥ds,

≤ M∥ k̃(0)∥υ +
qMυNfΓ(2− υ)

Γ(1 + q(1− υ))

∫ t

0

(t− s)q(1−υ)−1ds+
qMυGgΓ(2− υ)

Γ(1 + q(1− υ))

×
∫ t

0

(t− s)q(1−υ)−1ds,

≤ M∥ k̃(0)∥υ +
MυNfΓ(2− υ)T q(1−υ)

(1− υ)Γ(1 + q(1− υ))
+
MυGgΓ(2− υ)T q(1−υ)

(1− υ)Γ(1 + q(1− υ))
,

≤ U0. (51)

This finishes the proof of lemma. �

4. Convergence of Solutions

The convergence of the solution xn ∈ Hα of the approximate integral equa-
tions (35) to a unique solution x(·) of the equation (23) on [0, T ] is discussed in
this section.

Theorem 4.1. Let us assume that the conditions (A1)-(A5) are satisfied. If
k(0) ∈ D(A), for each t ∈ [−r, 0], then

lim
p→∞

sup
{n≥p,−r≤t≤T}

∥ xn(t)− xp(t)∥α = 0. (52)

Proof. For 0 < α < υ < 1, n ≥ p. Let t ∈ [−r, 0], we conclude

∥Aαxn(t)−Aαxp(t)∥ = 0. (53)

For t ∈ (0, T ], we obtain,
∥ fn(t, (xn)t, xn(a(xn(t), t)))− fp(t, (xp)t, xp(a(xp(t), t)))∥

≤ ∥ fn(t, (xn)t, xn(a(xn(t), t)))− fn(t, (xp)t, xp(a(xp(t), t)))∥
+∥ fn(t, (xp)t, xp(a(xp(t), t)))− fp(t, (xp)t, xp(a(xp(t), t)))∥,

≤ Lf [2 + LLa]∥ xn − xp)∥t,α + Lf [∥ (Pn − P p)xp∥t,α
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+∥ A−1∥ · ∥ (Pn − P p)xp(a(xp(t), t))∥α]. (54)

We also have the following estimation:

∥ (Pn − P p)xp∥T,α ≤ ∥ Aα−υ(Pn − P p)Aυxp∥t ≤
1

λυ−α
p

∥ Aυxp∥t.

Thus, we obtain
∥ fn(t, (xn)t, xn(a(xn(t), t)))− fp(t, (xp)t, xp(a(xp(t), t)))∥

≤ Lf [2 + LLa]∥ xn − xp∥t,α + Lf [
1

λυ−α
p

∥ xp∥t,υ

+
∥ A−1∥
λυ−α
p

· ∥ Aυxp(a(xp(t), t))∥]. (55)

And

∥ gn(s, xn(s), (xn)s)− gp(s, xp(s), (xp)s)∥ ≤ 2Lg[∥ xn − xp∥t,α +
1

λυ−α
p

∥ xp∥t,υ].

Therefore, we estimate
∥ (Gnxn)(t)− (Gpxp)(t)∥

= ∥
∫ t

0

b(t, s)[gn(s, xn(s), (xn)s)− gp(s, xp(s), (xp)s)]ds∥,

≤
∫ t

0

|b(t, s)| ∥ gn(s, xn(s), (xn)s)− gp(s, xp(s), (xp)s∥ds,

≤ 2bTLg[∥ xn − xp∥s,α +
1

λυ−α
p

∥ xp∥s,υ].

We choose t
′

0 such that 0 < t
′

0 < t < T , we have
∥ xn(t)− xp(t)∥α

≤ (

∫ t
′
0

0

+

∫ t

t
′
0

)(t− s)q−1∥ AαTq(t− s)∥

×∥ fn(s, (xn)s, xn(a(xn(s), s)))− fp(s, (xp)s, xp(a(xp(s), s)))∥ds

+(

∫ t
′
0

0

+

∫ t

t
′
0

)(t− s)q−1∥ AαTq(t− s)∥∥ (Gnxn)(s)− (Gpxp)(s)∥ds.

(56)

We estimate the first integral as∫ t
′
0

0

(t− s)q−1∥ AαTq(t− s)∥∥ fn(s, xn(s), xn(a(xn(s), s)))

−fp(s, (xp)s, xp(a(xp(s), s)))∥ds

≤
∫ t

′
0

0

(t− s)q−1∥ AαTq(t− s)∥2Nfds,

≤ 2NfMαΓ(2− α)

(1− α)Γ(1 + q(1− α))
[tq(1−α) − (t− t

′
0)

q(1−α)],
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≤ 2NfMαΓ(2− α)

(1− α)Γ(1 + q(1− α))
(t− b1t

′
0)

q(1−α)−1t
′
0, 0 < b1 < 1,

≤ 2NfMαΓ(2− α)

(1− α)Γ(1 + q(1− α))
(t0 − t

′
0)

q(1−α)−1t
′
0. (57)

By using Corollary 3.3, the second integral is estimated as∫ t

t
′
0

(t− s)q−1∥ AαTq(t− s)∥∥ fn(s, (xn)s, xn(a(xn(s), s)))

−fp(s, (xp)s, xp(a(xp(s), s)))∥ds

≤ qMαΓ(2− α)

Γ(1 + q(1− α))

∫ t

t
′
0

(t− s)q−1{Lf [2 + LLa]∥ xn − xp∥s,α

+Lf [
1

λυ−α
p

∥ xp∥s,υ +
∥ A−1∥
λυ−α
p

∥ Aυxp(a(xp(s), s))∥].}

≤ qMαLfΓ(2− α)

Γ(1 + q(1− α))
[(1 + ∥ A−1∥) U0T

q(1−α)

q(1− α)λυ−α
p

+(2 + LLa)

∫ t

t
′
0

(t− s)q(1−α)−1 × ∥ xn − xp∥s,αds]. (58)

Third and forth term are estimated as∫ t
′
0

0

(t− s)q−1∥ AαTq(t− s)∥∥ (Gnxn)(s)− (Gpxp)(s)∥ds

≤ 2GgMαΓ(2− α)

(1− α)Γ(1 + q(1− α))
(T − t

′

0)
q(1−α)−1t

′

0, (59)

and ∫ t

t
′
0
(t− s)q−1∥ AαTq(t− s)∥∥ (Gnxn)(s)− (Gpxp)(s)∥ds

≤ qMαLgbT Γ(2−α)

Γ(1+q(1−α))
2[ U0T

q(1−α)

q(1−α)λυ−α
p

+
∫ t

t
′
0
(t− s)q(1−α)−1∥ xn − xp∥s,αds]. (60)

Thus, we have
∥ xn(t)− xp(t)∥α

≤ D1t
′

0 +
D2

λυ−α
p

+D3

∫ t

t
′
0

(t− s)q(1−α)−1∥ xn − xp∥s,αds, (61)

where

D1 =
2NfMαΓ(2− α)

(1− α)Γ(1 + q(1− α))
(T − t

′

0)
q(1−α)−1 +

2GgMαΓ(2− α)

(1− α)Γ(1 + q(1− α))

×(T − t
′

0)
q(1−α)−1,

D2 =
qMαLfΓ(2− α)

Γ(1 + q(1− α))
× (1 + ∥ A−1∥)U0T

q(1−α)

q(1− α)
+
qMαLgbTΓ(2− α)

Γ(1 + q(1− α))

×2
U0T

q(1−α)

q(1− α)
,
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D3 =
qMαLfΓ(2− α)

Γ(1 + q(1− α))
(2 + LLa) + 2

qMαLgbTΓ(2− α)

Γ(1 + q(1− α))
.

We now put t = t+ θ in the above inequality, where θ ∈ [t
′

0 − t, 0] and get
∥xn(t+ θ)− xp(t+ θ)∥α

≤ D1t
′

0 +
D2

λυ−α
p

+D3

∫ t+θ

t
′
0

(t+ θ − s)q(1−α)−1∥ xn − xp∥s,αds. (62)

Taking s− θ = ν in above inequality and obtaining,
∥xn(t+ θ)− xp(t+ θ)∥α

≤ D1t
′

0 +
D2

λυ−α
p

+D3

∫ t

t
′
0−θ

(t− ν)q(1−α)−1∥ xn − xp∥ν+θ,αdν,

≤ D1t
′

0 +
D2

λυ−α
p

+D3

∫ t

t
′
0

(t− ν)q(1−α)−1∥ xn − xp∥ν,αdν. (63)

Thus, we have
supt′0−t≤θ≤0 ∥xn(t+ θ)− xp(t+ θ)∥α

≤ D1t
′

0 +
D2

λυ−α
p

+D3

∫ t

t
′
0

(t− ν)q(1−α)−1∥ xn − xp∥ν,αdν.

(64)

Since, for t+ θ ≤ 0, we have xn(t+ θ) = k(t+ θ) for all n ≥ n0. Thus, we obtain
sup−r−t≤θ≤0 ∥xn(t+ θ)− xp(t+ θ)∥α

≤ sup
0≤θ+t≤t

′
0

∥xn(t+ θ)− xp(t+ θ)∥α + sup
t
′
0−t≤θ≤0

∥xn(t+ θ)− xp(t+ θ)∥α.(65)

Thus, for each t ∈ (0, t
′

0], we have

∥xn(t+ θ)− xp(t+ θ)∥α ≤ D5t
′

0 +
D6

λυ−α
p

, (66)

where D5 and D6 are arbitrary positive constants. Using (64) and (66) in (65)
and thus getting
sup−r≤t+θ≤t ∥xn(t+ θ)− xp(t+ θ)∥α

≤ (D1 +D5)t
′

0 +
D2 +D6

λυ−α
p

+D3

∫ t

t
′
0

(t− ν)q(1−α)−1∥ xn − xp∥ν,αdν.(67)

Thus, we get

∥xn − xp∥t,α ≤ (D1 +D5)t
′

0 +
D2 +D6

λυ−α
p

+D3

∫ t

t
′
0

(t− ν)q(1−α)−1∥ xn − xp∥ν,αdν.

(68)
By Lemma 5.6.7 in [35], we have that there exists a constant K such that

∥ xn(t)− xp(t)∥α ≤ [(D1 +D5)t
′

0 +
D2 +D6

λυ−α
p

]K, (69)
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Since t
′

0 is arbitrary and letting p → ∞, therefore the right hand side may be

made as small as desired by taking t
′

0 sufficiently small. This complete the proof
of the Theorem. �

By the Theorem 4.1, we conclude that {xn} is a Cauchy sequence in BR. Now,
we show the convergence of the solution for the approximate integral equation
xn(·) to the solution of associated integral equation x(·).

Theorem 4.2. Suppose that conditions (A1)-(A5) are satisfied and k(t) ∈ D(A)
for each t ∈ [−r, 0]. Then, there exists a unique xn ∈ BR, satisfying

xn(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gnx)n(s)ds, t ∈ [0, T ],

(70)

and x ∈ BR, satisfying

x(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)f(s, xs, x(a(x(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gx)(s)ds, t ∈ [0, T ],

(71)

such that xn converges to x in BR i.e., xn → x as n→ ∞.

Proof. Let k(t) ∈ D(A) for all t ∈ [−r, 0]. For 0 < t ≤ T , it follows that there
exists xn ∈ BR such that Aαxn(t) → Aαx(t) ∈ BR as n → ∞ and x(t) =
xn(t) = k(t), for each t ∈ [−r, 0] and for all n. Also, for t ∈ [−r, T ], we have
Aαxn(t) → Aαx(t) as n → ∞ in H. Since BR is a closed subspace of Cα−1

T and
xn ∈ BR, therefore it follows that x ∈ BR and

lim
n→∞

sup
t0≤t≤T

∥ xn(t)− x(t)∥α = 0, for any t0 ∈ (0, T ]. (72)

Also, we have
supt∈[t0,T ] ∥ fn(t, (xn)t, xn(a(xn(t), t)))− f(t, xt, x(a(x(t), t)))∥

≤ Lf [2 + LLa]∥ xn − x∥t,α + Lf [∥ (Pn − I)x(t)∥α
+∥ A−1∥ ∥ (Pn − I)x(a(x(t), t))∥α] → 0, (73)

as n→ ∞ and
supt∈[t0,T ] ∥ gn(t, xn(t), (xn)t)− g(t, x(t), xt)∥

≤ 2Lg[∥ xn − x∥t,α + ∥ (Pn − I)x∥t,α] → 0, (74)

as n→ ∞. For 0 < t0 < t, we rewrite (35) as

xn(t) = Sq(t)k̃(0) + (
∫ t0
0

+
∫ t

t0
)(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds

+(
∫ t0
0

+
∫ t

t0
)(t− s)q−1Tq(t− s)(Gnxn)(s)ds.

We may estimate the first and third integral as

∥
∫ t0
0
(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds∥ ≤ qMNf

Γ(1+q)T
q−1t0,
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∥
∫ t0
0
(t− s)q−1Tq(t− s)(Gnxn)(s)ds∥ ≤ qMGg

Γ(1+q)T
q−1t0. (75)

Thus, we deduce that

∥ xn(t)− Sq(t)k̃(0)−
∫ t

t0

(t− s)q−1Tq(t− s)

×fn(s, (xn)s, xn(a(xn(s), s)))ds−
∫ t

t0

(t− s)q−1Tq(t− s)(Gnxn)(s)ds∥

≤ [
qMNf

Γ(1 + q)
T q−1 +

qMGg

Γ(1 + q)
T q−1]t0. (76)

Letting n→ ∞ in the above inequality, we obtain

∥ x(t)− Sq(t)k(0)−
∫ t

t0

(t− s)q−1Tq(t− s)f(s, xs, x(a(x(s), s)))ds

−
∫ t

t0

(t− s)q−1Tq(t− s)(Gx)(s)ds∥ ≤ [
qMNf

Γ(1 + q)
T q−1 +

qMGg

Γ(1 + q)
T q−1]t0.

Since t0 is arbitrary and hence, we conclude that x(·) satisfies the integral equa-
tion (23). �

5. Faedo-Galerkin Approximations

In this section, we consider the Faedo-Galerkin Approximation of a solution
and show the convergence results for such an approximation.

We know that for any 0 < T < T0, there exists a unique x ∈ Cα
T satisfying

the following integral equation

x(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)f(s, xs, x(a(x(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gx)(s)ds, t ∈ [0, T ],

(77)

with 0 < T < T0.
Also, we have a unique solution xn ∈ Cα

T of the approximate integral equation

xn(t) =


k̃(t), t ∈ [−r, 0],

Sq(t)k̃(0) +
∫ t

0
(t− s)q−1Tq(t− s)fn(s, (xn)s, xn(a(xn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)(Gnxn)(s)ds, t ∈ [0, T ].

(78)

Applying the projection on above equation, then Faedo-Galerkin approximation
is given by vn(t) = Pnxn(t) satisfying

Pnxn(t) = vn(t)
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=



Pnk̃(t), t ∈ [−r, 0],

Sq(t)P
nk̃(0) +

∫ t

0
(t− s)q−1Tq(t− s)

×Pnfn(s, (xn)s, xn(a(xn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)Pn(Gnxn)(s)ds, t ∈ [0, T ].

(79)

or

vn(t) =


Pnk̃(t), t ∈ [−r, 0],

Sq(t)P
nk̃(0) +

∫ t

0
(t− s)q−1Tq(t− s)Pnf(s, (vn)s, vn(a(vn(s), s)))ds

+
∫ t

0
(t− s)q−1Tq(t− s)Pn(Gvn)(s)ds, t ∈ [0, T ].

(80)

Let solution x(·) of (77) and vn(·) of (79), have the following representation

x(t) =
∞∑
i=0

αi(t)χi, αi(t) = (x(t), χi), i = 0, 1, 2 · · · , (81)

vn(t) =
n∑

i=0

αn
i (t)χi, αn

i (t) = (vn(t), χi), i = 0, 1, 2 · · · , (82)

Using (82) in (79), we obtain a system of fractional order integro-differential
equation of the form

dq

dtq
αn
i (t) + λiα

n
i (t) = Fn

i (t, α
n
0 (t), α

n
1 (t)..., α

n
n(t))

+

∫ t

0

b(t, s)Gn
i (t, α

n
0 (s), α

n
1 (s)..., α

n
n(s))ds, (83)

αn
i (0) = k(t), on [−r, 0], (84)

where

Fn
i = (f(t,

n∑
i=0

(αn
i )tχi,

n∑
i=0

τni χi), χi), (85)

τni = αn
i (a(α

n
0 , α

n
1 , · · · , αn

n, t)), (86)

Gn
i = (g(t,

n∑
i=0

αn
i χi,

n∑
i=0

(αn
i )tχi), χi) (87)

φi = (k(t), ϕi), for i = 1, 2, · · · , n. (88)

For the convergence of αn
i to αi, we have the following convergence theorem.

Corollary 5.1. Assume that (A1)-(A5) are satisfied. If k(t) ∈ D(A) for each
t ∈ [−r, 0], then

sup
t∈[−r,T ]

∥ vn(t)− vp(t)∥α → 0, as p, n→ ∞. (89)

Proof. For n ≥ p and 0 ≤ α < υ, we get

∥ vn(t)− vp(t)∥α = ∥ Pnxn(t)− P pxp(t)∥α,
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≤ ∥ Pn[xn(t)− xp(t)]∥α + ∥ (Pn − P p)xp(t)∥α,

≤ ∥ xn(t)− xp(t)∥α +
1

λυ−α
p

∥ Aυxp(t)∥. (90)

Since xn → xp and λp → ∞ as p → ∞, thus, for t ∈ [−r, 0] and k(t) ∈ D(A),
the result follows from Theorem 4.1. �

Theorem 5.2. Let us assume that (A1)-(A5) are satisfied and k(t) ∈ D(A) for
all t ∈ [−r, 0]. Then there exist a unique function vn ∈ BR given as

vn(t) = Sq(t)P
nk̃(0) +

∫ t

0

(t− s)q−1Tq(t− s)Pnf(s, (vn)s, vn(a(vn(s), s)))ds

+

∫ t

0

(t− s)q−1Tq(t− s)Pn(Gvn)(s)ds,

(91)

for all t ∈ [0, T ] and x ∈ BR satisfying

x(t) = Sq(t)k̃(0) +

∫ t

0

(t− s)q−1Tq(t− s)f(s, xs, x(a(x(s), s)))ds

+

∫ t

0

(t− s)q−1Tq(t− s)(Gx)(s)ds, (92)

for t ∈ [0, T ], such that vn → x as n → ∞ in BR and x satisfies the equation
(23) on [0, T ].

Proof. By the Theorem 4.2, we have that

lim
n→∞

sup
t∈[−r,T ]

∥xn(t)− x(t)∥α = 0. (93)

Thus, we conclude that

∥vn(t)− x(t)∥α = ∥Pnxn(t)− Pnx(t) + Pnx(t)− x(t)∥α,
≤ ∥Pn(xn(t)− x(t))∥α + ∥(Pn − I)x(t)∥α. (94)

Since xn → x as n→ ∞, then, for t ∈ [−r, 0] and k(t) ∈ D(A), the result follows
from Theorem 4.2. �

The system (83)-(84) determines the αn
i ’s. Thus, we have following theorem.

Theorem 5.3. Let us assume that (A1)-(A5) are satisfied. If k(t) ∈ D(A) for
each t ∈ [−r, 0], then

lim
n→∞

sup
t∈[−r,T ]

[
n∑

i=0

λ2αi (αi(t)− αn
i (t))

2] = 0. (95)

Proof. It can easily be determined that

Aα[x(t)− vn(t)] = Aα[

n∑
i=0

(αi(t)− αn
i (t))χi] +Aα

∞∑
i=n+1

αi(t)χi
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=

n∑
i=0

λαi (αi(t)− αn
i )χi +

∞∑
i=n+1

λαi αi(t)χi. (96)

Thus, we conclude that

∥ Aα[x(t)− vn(t)]∥2 ≥
n∑

i=0

λ2αi (αi(t)− αn
i (t))

2. (97)

From the Theorem 4.2, we have vn → x as n → ∞. Thus, we conclude that
αn
i → αi as n→ ∞. This gives the proof of the theorem. �

6. Example

Let us consider the following integro-differential equation with deviated ar-
gument of the form

∂qw(t, x)

∂tq
=

∂2w(t, x)

∂x2
+H(x,w(t, x)) + G(t, x, w(t+ θ, x))

+

∫ t

0

b(t, τ)

∫ 0

−r

γ1(θ)

1 + w(τ + θ, x)
dθdτ, t > 0, x ∈ (0, 1), (98)

w(t, 0) = w(t, 1) = 0, t > 0, (99)

w(θ, x) =
1

p2
· |w(θ, x)|
1 + |w(θ, x)|

, −r ≤ θ ≤ 0, (100)

where t ∈ [0, 1], x ∈ [0, 1], q ∈ (0, 1), p ∈ N, r > 0, b is real valued, γ1 : [−r, 0] →
R are continuous functions with

∫ 0

−r
|γ1(θ)|dθ < 1, H is given by

H(x,w(t, x)) :=

∫ x

0

K(x, y)w(g(t)|w(t, y)|, y)dy, (101)

and the function G : R+ × [0, 1]× C([−r, 0],R) → R is measurable in x, locally
Lipschitz continuous in w, uniformly in x and locally Hölder continuous in t.
Here, we assume that g : R+ → R+ is locally Hölder continuous in t such that
g(0) = 0 and K ∈ C1([0, 1]× [0, 1],R).
LetH = L2((0, 1),R). Now, we define operator by Aw = −d2w/dx2 with domain
D(A) = H2(0, 1) ∩ H2

0 (0, 1). We also have X1/2 = D((A)1/2) = H1
0 (0, 1), and

X−1/2 = (H1
0 (0, 1))

∗ = H−1(0, 1) ≡ H1(0, 1). For each w ∈ D(A) and λ ∈ R
with −Aw = λw, we get

< −Aw,w > = < λw,w >,

∥w′∥L2 = λ∥w∥L2 , for some λ > 0. (102)

The w(x) = C sin(
√
λx)+D cos(

√
λx) is the solution of the problem Aw = −λw.

By utilizing the boundary conditions, we get D = 0 and λn = n2π2 for n ∈ N.
Thus, wn(x) = C sin(

√
λx) is the eigenvector corresponding to eigenvalue λn.

We also have < wn, wm >= 0 for n ̸= m and < wn, wn >= 1. Thus, we
have that for w ∈ D(A), there exists a sequence βn of real numbers such that
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w(x) =
∑

n∈N βnwn(x) with
∑

n∈N(βn)
2, and

∑
n∈N(βn)

2(λn)
2 < ∞. The, we

have following representation of the semigroup

T (t)w =
∑
n∈N

exp(−n2t) < w,wm > wm. (103)

Now, for x ∈ (0, 1), we define f : [0, 1]×C([−r, 0],H1
0 (0, 1))×H1(0, 1) → L2(0, 1)

by

f(t, ϕ, ψ) = H(x, ψ) + G(t, x, ϕ), (104)

where

H(x, ψ(x, t)) =

∫ x

0

K(x, y)ψ(y, t)dy. (105)

Thus, it can be verified that f satisfies the hypotheses (A3).
Similarly, for x ∈ (0, 1), we define g : [0, 1] × H1

0 (0, 1) × C([−r, 0],H1
0 (0, 1)) →

L2(0, 1) by

g(t, φ, ϕ)(x) =

∫ 0

−r

γ1(θ)

1 + |ϕ(θ)(x)|
dθ, θ ∈ [−r, 0]. (106)

Then, it can be seen that g fulfills hypotheses (A5). Thus, we can apply the
results of previous sections to study the existence and convergence of the mild
solution to system (98)-(100).
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