• Title/Summary/Keyword: Finsler Space

Search Result 60, Processing Time 0.029 seconds

ON PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE INFINITE SERIES (α,β)-METRIC

  • Lee, Il-Yong
    • East Asian mathematical journal
    • /
    • v.28 no.1
    • /
    • pp.25-36
    • /
    • 2012
  • We introduced a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$-metric $L({\alpha},{\beta})={\beta}\sum\limits_{k=0}^r\(\frac{\alpha}{\beta}\)^k$, where ${\alpha}<{\beta}$ and investigated it with respect to Berwald space ([12]) and Douglas space ([13]). The present paper is devoted to finding the condition that is projectively at on a Finsler space $F^n$ with an approximate infinite series (${\alpha},{\beta}$)-metric above.

ON THE BERWALD CONNECTION OF A FINSLER SPACE WITH A SPECIAL $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.355-364
    • /
    • 1997
  • In a Finsler space, we introduce a special $(\alpha,\beta)$-metric L satisfying $L^2(\alpha,\beta) = c_1\alpha^2 + 2c_2\alpha\beta + c_3\beta^2$, which $c_i$ are constants. We investigate the Berwald connection in a Finsler space with this special $\alpha,\beta)$-metric.

  • PDF

GEODESIC EQUATIONS OF TWO-DIMENSIONAL FINSLER SPACES WITH (${\alpha},\;{\beta}$)-METRICES $L\;=\;{\beta}+\{frac{\alpha^2}{\beta}\;AND\;L\;=\;{\alpha}+\frac{\beta^2}{\alpha}$.

  • Lee, Il-Yong;Choi, Eun-Seo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.839-848
    • /
    • 1998
  • We can obtain the concise description of two dimensional Finsler space from the viewpoint of their geodesic curves. In this paper we obtain the geodesic equations in a two-dimensional Finsler space with some special (${\alpha},\;{\beta}$)-metrics by using the Weierstrass form. We shall be referred to an isothermal coodinate system and an orthonormal one with respect to an associated Riemannian space.

ON PROJECTIVELY FLAT FINSLER SPACES WITH $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Lee, Il-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.373-383
    • /
    • 1999
  • The ($\alpha$,$\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-from $\beta$;it has been sometimes treated in theoretical physics. The condition for a Finsler space with an ($\alpha$,$\beta$)-metric L($\alpha$,$\beta$) to be projectively flat was given by Matsumoto [11]. The present paper is devoted to studying the condition for a Finsler space with L=$\alpha$\ulcorner$\beta$\ulcorner or L=$\alpha$+$\beta$\ulcorner/$\alpha$ to be projectively flat on the basis of Matsumoto`s results.

  • PDF

ISOMETRIC IMMERSIONS OF FINSLER MANIFOLDS

  • Lee, Nany;Won, Dae Yeon
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • For an isometric immersion $f:M{\rightarrow}{\bar{M}}$ of Finsler manifolds M into $\bar{M}$, we compare the intrinsic Chern connection on M and the induced connection on M: We find the conditions for them to coincide and generalize the equations of Gauss, Ricci and Codazzi to Finsler submanifolds. In case the ambient space is a locally Minkowskian Finsler manifold, we simplify the above equations.

  • PDF

THE RANDER CHANGES OF FINSLER SPACES WITH ($\alpha,\beta$)-METRICS OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Il-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.503-521
    • /
    • 2001
  • A change of Finsler metric L(x,y)longrightarrowL(x,y) is called a Randers change of L, if L(x,y) = L(x,y) +$\rho$(x,y), where $\rho$(x,y) = $\rho$(sub)i(x)y(sup)i is a 1-form on a smooth manifold M(sup)n. Let us consider the special Randers change of Finsler metric LlongrightarrowL = L + $\beta$ by $\beta$. On the basis of this special Randers change, the purpose of the present paper is devoted to studying the conditions for Finsler space F(sup)n which are transformed by a special Randers change of Finsler spaces F(sup)n with ($\alpha$,$\beta$)-metrics of Douglas type to be also of Douglas type, and vice versa.

  • PDF

EQUATIONS OF GEODESIC WITH AN APPROXIMATE INFINITE SERIES (${\alpha},{\beta}$)-METRIC

  • Lee, Il-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.183-200
    • /
    • 2012
  • In the present paper, we consider the condition that is a geodesic equation on a Finsler space with an (${\alpha},\;{\beta}$)-metric. Next we find the conditions that are equations of geodesic on the Finsler space with an approximate infinite series (${\alpha},\;{\beta}$)-metric.

FINSLER SPACES WITH CERTAIN ($\alpha$,$\beta$)-METRIC OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Yong-Duk
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.649-658
    • /
    • 2001
  • We shall find the condition for a Finsler space with a special ($\alpha$.$\beta$)-metric L($\alpha$.$\beta$) satisfying L$^2$ =2$\alpha$$\beta$ to be a Douglas space. The special Randers change of the above Finsler metric by $\beta$ is also studied.

  • PDF

PROJECTIVELY FLAT FINSLER SPACE WITH AN APPROXIMATE MATSUMOTO METRIC

  • Park, Hong-Suh;Lee, Il-Yong;Park, Ha-Yong;Kim, Byung-Doo
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.501-513
    • /
    • 2003
  • The Matsumoto metric is an ($\alpha,\;\bata$)-metric which is an exact formulation of the model of Finsler space. Lately, this metric was expressed as an infinite series form for $$\mid$\beat$\mid$\;<\;$\mid$\alpha$\mid$$ by the first author. He introduced an approximate Matsumoto metric as the ($\alpha,\;\bata$)-metric of finite series form and investigated it in [11]. The purpose of the present paper is devoted to finding the condition for a Finsler space with an approximate Matsumoto metric to be projectively flat.