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ON THE RANDERS CHANGES OF FINSLER SPACES
WITH THE KROPINA TYPE OF DOUGLAS TYPE

IL-YoNG LEE AND MEONG-HAN LEE

1. Introduction

A Finsler space F™ with the vanishing Douglas tensor [J is said to
be of Douglas type or called a Douglas space ([3], [13]). It is known
that if a Finsler space F™ is projective to a Berwald space, then F™ is
of Douglas type {[2]). Recently, S. Bdcsé and M. Matsumoto([3]) have
introduced the new notion of Douglas space as a generalization of a
Berwald space from the viewpoint of geodesic equations.

A Finsler metric L(z,y) is called an («, 3)-metric, when L is a pos-
itively homogeneous function L(a, ) of degrec one in two variables :
a? = a,,(2)y*y’ and l-form 8 = b,(2)y*. The theories of Finsler spaces
with (a,8)-metric have contributed to the development of. Finsler ge-
ometry ({11]), and Berwald spaces with an {a,3)-metric have been
treated by some authors ({1, 7], [10]). Since a Berwald space is a
kind of Douglas spaces, the noteworthy point of the present paper is
to observe that, comparing with the condition of Berwald space, to
what extent the condition of Douglas space relaxed. The (a, 8}-metric
L{e, B) satisfying L = (c10? + ¢28%)/3, where ¢,’s are constants, is
called a Kropina type. Some properties of the Finsler metric L satisfy-
ing the Kropina type have been investigated by ([2], [9]).
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On the other hand, the Randers metric L = « + f§ is considered
as the modification of a Riemannian metric a by 1-form 8. We can
consider generally the change of Finsler metric L — L = L + p, where
p is a 1-form. This change is called the Randers change by p.

In the present paper, first we are devoted to studying the general
Randers change of the Finsler space F™ which is of Douglas type. Next,
we deal with the condition for a Finsler space F™ with the Kropina
type to be of Douglas type. Next, we investigate the condition that
the Finsler space F* with the Kropina type obtained from a special
Randers change by 3 is also of Douglas type. Finally, in order to
compare with the Douglas space, we find the condition for F'™ to be a
Berwald space.

Throughout the present paper the terminology and notation are
referred to Matsumoto’s monograph ([14]).

2. Preliminaries

The geodesics of a Finsler space F® = (M™, L) are given by the
system of differential equations

d2x d?z? dx?
hadihadl _ i ] % 2 {3 vy r T
75 Y — Y +2{G"(z, 0y’ -G’ (z,y)y"'} =0, 7

in a parameter ¢. The functions G*(x,y) are given by
2G*(z,y) = ¢V (y 0,0, F — ,F) = { j’k } T

where & = 8/9z°, 9, = 8/8y*, F = L?/2, ¢*(x, ) are the inverse of
Finsler metric g,,(z, ¥) and {jﬁk
from g,,(x,y) with respect to zi.

A Finsler space F™ is said to be of Douglas type or called a Douglas
space ([3]} if

are Christoffel symbols constructed

DY =Gz, y)y’ — G (z,y)y
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are homogeneous polynomials in (y*) of degree three. It is shown that
F™ is of Douglas type, if and only if the Douglas tensor

1
Dzhgk = Gzhjk - ;L:_I(szkyh + széz + ijézl +Gk16?)

vanishes everywhere, where G,th = 8szh3 is the hAwv-curvature tensor
of the Berwald connection BI' = (G, G}), Gy = G."jr and Gy =
8Cy (12).

On the other hand, F™ is said to have an (o, )-metric, if L is a pos-
itively homogeneous function of (e, 3) of degree one in « and 3, where
a? = a,,(z)y*y’ and B = b,(z)y*. The space R* = (M™, a) is called
the associated Riemannian space with F™ ([2], [6], {11]). In R™ we have
the Christoffel symbols «,*;(z) and the covariant differentiation with
respect to y,*x(z). We shall use the symbols as follows:

1 1
Ty = §(bz;9 +b5), 8y = §(bz;3 = bs32),

T __ AT _ 7
8, =a"s;,, 8§;,=0b:5,.

It is noted that s,, = %(O,bz — 0,b,).

There are two kinds of Finsler spaces with an (a,3)-metric which
are specially interesting and important in the geometrical point of view
as well as in applications to physics ;

Randers spaces with . = @ + 8 and the Kropina spaces with L =
a?/p.

Those spaces of Douglas type have been considered in the previous
paper ([3]):

LEMMA 2.1. A Randers space is of Douglas type if and only if s,, =
0. Moreover 2G* = vp*o + Tooy* /L.

It has been shown ([7], [10]) that a Randers space is a Berwald
space, if and only if b,.,, = 0. Therefore the condition in Lemma 2.1 is
certainly more relaxed than that of Berwald space.
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Now we consider the functions G*(z, y) of F™ with an (a, 3)-metric.
According to {[8], [10]), they are written in the forms

2G* = o'y + 287,
2.1 .
0N By sy el (L ay)

where

_ BLg o e @B(rooLa — 2as0lg)
E==77C, = 2B%2Le + 0y?Log)
,7,2 — b2a2 _ ;82, b2 — tjbgbj.

T _ 1
b* = ab,,

Since ¥o'0 = ¥,"%(z)y’y"* are homogeneous polynomials in (y) of de-
gree two, we have :

PROPOSITION 2.2. A Finsler space F™ with («, 3)-metric is a Dou-
glas space if and only of BY = By’ — B?y* are homogeneous polyno-
mials in (y*) of degree three.

Thus the equation (2.1) gives
oL o @ Lga i
Loty = s4y) + O by — by,

o

(2.2) BY=

Here, we shall state the following lemma for the later frequent use ([8]):

LEMMA 2.3. If o? =0 (mod 8), that is, a,;(2)y y’ contains b, (x)y*
as a factor, then the dimension is equal to two and b? vanishes.
In this case we have § = d,(x)y* satisfying a® = 36 and db* = 2.

Throughout the paper, we shall say “homogeneous polynomial(s) in
(y*) of degree r”as hp(r) for brevities. Thus 7’ are hp(2) and, if the
space is of Douglas type, then D* and B¥ are hp(3).

On the other hand, we consider the properties of Randers change
by p. Let L, = 8,L, L,3—66L L,L,k—é?k(’?@L Then we have

L; = zn Lng = hzja L2szk = hnlk + h']klz + h’k!lj-
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And we put
(23) QEIJ = Py + Piles 2Ft_',r = Py — Pylo

where (1) denotes the h-covariant derivative with respect to the Cartan
connection CT' = (F*;,G*,;,Ci%,).
The following Lemma 2.4 ({13]) is used later.

LEMMA 2:4. A system of linear equations

L“”Xr = Yu (lr +pr)Xr = Y, (Yzyz = 0)1

i X* has the unique solution
1
X =LY+ ;(Y - LY p ),

where Y* = g*"Y, and T = L/L.

3. Randers change of Douglas type

In general, we are devoted to investigating the condition that a
Finsler space F,, obtained from Randers change by p with respect
to a Finsler space Fy, is of Douglas type. For a Randers change :
L(z,y) — L(z,y) = L(z,y) + p(z,y), plz,y) = p(x).¥",

we may put

(3.1) G =G+ D

So Z}'ﬂj = G, + D*; and Zﬁ;k =G,k + D)y, where D) = SJD‘ and
D'y = 0 D*,. The tensors D*, D*; and D,*; are positively homoge-
neous in * of degree two, one and zero respectively. In the following
the explicit form of D* is necessary. To find this, we deal with equation
ng!k = 0, where sz]k is the h-covariant derivative of L,, = h,,/L in
CT. Note that

aksz = LerGrk + LryF‘zrk + LZTFjrk'
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Since fz, = L., and fi.,k = L,;x hold,
Lk = Ly (G"x + D7) + Loy (B — D7) + Lo (Fy "k + D),
which imply
LoDk + Loy Dk + LDy = 0.
Thus transvection of this equation by y* yields
(3.2) 2L,/ D" +L,D", + L., D", =0.
Next, we deal with L,); = 0, that is,
0;L, = L.G", + L. F,",,
0L, = L(G"; + D7) + (Ly + pr {75 + °D.,),

where “D,”, = F,") — F,". Substitution of the equations above in
)L, = 0,L, + 8,p, leads to

0,00 — prFyy = Lie D"y + (I + pr) °Dy7 5.
Then we have

(3.3) 2E,, = L,D",+ L,D", +2(l. + pr) °D,",
(3.4) 2F, =L,.D",—-L,D,.
Therefore (3.2) and (3.4) give

(3.5) LDy = Fzy — Ly D7

and transvection of (3.3) by #* gives

(3.6) (1 + pr) D', = Epyyf = Ly D'

Furthermore transvection of (3.5) and (3.6) by ” leads to

BT (@) LD =FEy, () (-+p)D = SE 'y

The equations (3.7)(a) and (3.7)(b) constitute a system of linear equa-
tions respectively. Applying Lemma 2.5 to (3.7), we have

11
(38) D = LEF+ f(gE@g — LFo)yl,

where I*, = ¢ F,, and F, = p.F"

Thus we have the following :

7
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PROPOSITION 3.1. ([13])  The tensor D* of (3.1) arising from a
Randers change is given by (3.8).

From (3.1) and (3.8) we have

(3.9) Gy -Gy =Gy — Py + L(Froy’ — Floy').

Suppose F™ is a Douglas space, that is, G*y? —G?y* be hp (3). Therefore
the Randers change F- of F™ by p is also a Douglas space if and only
if L(F*oy? — F?oy*) is hp (3). Thus we have the following :

THEOREM 3.2. Let F™ be a Douglas space and F' a Finsler space
which is obtained by Randers change by p. Then ' is a Douglas space
if and only if L(F*oy’ — F7gy*) is hp (3).

From (3.9), G’y — "@jyi = G'y? — G7y* if and only if Fgy’ is
symmetric in 7 and j. Thus we have the following :

'THEOREM 3.3. Let F'™ be a Finsler space satisfying that F'oy’ are
symmetric in i, j, and F" be the Randers change of F™. If F™ is a
Douglas space, then F is also a Douglas space, and vice versa.

The Randers changes are called projective Randers changes if all the
geodesic curves are prescrved under the Randers changes. According
to Hashiguchi-Ichijyo ([5]), a Randers change is projective if and only
if F,, = 0, that is, p, is a locally gradient vector field. In this case,
(3.8) is reduced to D* = Egay*/2L. Therefore we have D'y? — DIy* = 0.

Thus G 37 — G y* = G*y? — Gy, Consequently, we have the following

THEOREM 3.4. Let F*"(M™, L) — F (M™, . + p) be a projective

Randers change. If F™ is a Douglas space, then F" is also a Douglas
space, and vice versa.
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4. Douglas space with a Kropina type

We consider a condition for a Finsler space F™ with Kropina type
satisfying

2 2
4.1 L:M
(4.1) 5

to be of Douglas type. As it has been remarked in [4], b> # 0 may be
supposed for F?, and hence Lemma 2.4 shows o2 # 0 (mod 8). Then
from (4.1) we obtain

(42)  BLa=20, BLg=cf’~c10®, PBLaa=2c1

Thus (2.2) gives

B [ [3 17 — C BS
! {2201 (s'0y” — S oy*) + —a—n Ogclb; (b — bjy’)}
(4.3)

a?sg

| o g : 7 i’ z bz! 7 bj‘! 1
Since the term

(c28/2c1){(soy” — 870y") + {{c1700 — c2350) /2¢:16*} ('Y — V' y*)

is hp(3), this term may be neglected in our discussion and we deal only
with

] a2 50 .
k¥ —_ _~ .7 2y T _ K2
@9 B = {50V 0y - (s’ T}
It follows from a? # 0 {mod 3) that (4.4) leads to
s :
b_g(b‘y’ —0y") — sty + 7oy’ = Pu,
where u*? = u} (z)y*. This can be written in the form

1 .
(4.5) b2 {0 (808 +s67) —1/5} — (s*h6L+ k67, —i/7) = bpuy? +bpsy)
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where 7/j denotes the interchange of indices 7, j of the previous terms.
Transvecting (4.5) by a"*, we have

1 T T 1 r,,t
{4.6) I_)E(b s7 — b8y — 28 =bul.
Next, transvection of (4.5) by b" leads to

(4.7) S8 + b8y ~1/§ = bPul + bibTul.

Further, contracting (4.5} by 7 = h, we get

(4.8) n (%b‘sk - szk) = bpuy + bruy.
Substituting "4? of (4.6) in (4.7), we get

b?uy! = 28by + (bzsjk + 88 + 'bl—zszbjbk - ZU) ’

which implies
bﬂu;r — (n _ 1)8", beru? =b'sy — bQSzk.

Consequently (4.8) leads to

1
(4.9) S = ﬁ(blsk — bks,).

Then (4.4) gives
i C|f2 T,..7 1.2
B ’ = 2b2 (8 y -8 y )’

which is Ap(3).

Therefore we get (4.9) as a necessary and sufficient condition for F™
to be of Douglas type.

In particular, we shall deal with the two-dimensional Kropina type
F? to be of Douglas type. On account of [8], the skew-symmetric tensor
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8,; can be written as s,; = s(,v, - %,v;) in the Berwald frame (u,v)
of the associated Riemannian space R%. Since b, = (8/a)u, + Bv,, we

get s = —sav® and s, = (s3/a)v, — esBu,, where e is the signature
of R?. Thus

b, sk — brs, = (g;- + eBQ) 8(U vk — UV, ).

Since B satisfies eB?+(3/a)? = b%, above equation just coincides with
(4.9).
‘Therefore we have the following :

THEOREM 4.1. A Kropina type F™ is of Douglas type if and only if
the equation in (4.9) is satisfied.

5. Douglas space with Kropina type
by a special Randers change

In this section, we consider a condition for which a Finsler space
F", obtained from a special Randers change by 8 of the Finsler metric
L satisfying (4.1), is of Douglas type, where the modification 1-form
p is coincided with g of (4.1). Let o= {M™,L) be a Finsler space
which is obtained by Randers change of L satisfying

(5.1) Z=?_1£2_%&f’3+5

Then we obtain

BLa =2c1a, B°Lg={cy+ 1) —c10?, BLaa =2ci,
2¢10%aC* = c1rg03 — so{(c2 +1)8% ~ c1a2}.

Substituting (5.2} in (2.2), we have

(5.2)

=2 Jerew — (ca +1)8so ,,,
B = { 50,87 by’ — ¥y)
(53) 2 D - g}

ol

+ 55 L EV — V) — (o - o)}
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Because the term

C17o0 — (Cz + 1)[380 . 2 (02 + 1)ﬁ LR D, }
{ 5o, by — b'y*) + TToe (s'oy’ — s70%")

is hp(3), this term may be neglected in our discussion and we treat
only

2 .
(5.4) WY = 373 {-Sb%(b’y’ —¥yt) — (s'oy’ — 8’0312)} :

For n > 2, a® # 0 (modfB) ([3]). Therefore there exists hp(1)
v = v (z)y* such that

(5.5) so(b'y’ — Byt) — b2 (soy’ — shoy’) = b2 vV,

This equation is written as follows:

56 o3 0 (o6 + 5167) — 7 (oL + 5eh)}
—(8 067k + 8'k878) + (8716 % + 8716 n) = brud + bivy.
Transvection of (5.6) by a® leads to
(5.7) (D87 — B8ty — 2b%s" = b2b v,
Next, transvecting (5.6) by b*, we have
(5.8) (8%6] + b's71) — (878L + b7s™y) = bP0}? + brb vl

Contraction of {5.6) with j and h leads to
(5.9) n(b’sk — bQS’k) = b2 (bvi" — brv?”).
Substituting b"v¥ of (5.7) in (5.8), we have

1
b2v) = 25*by + {btsfk — s+ 56, — 876 + (b — st’bk)},
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which implies

(n—1) b
vy = 2 s, bruy, = 73Sk~ .

Consequently (5.9) leads to
(5.10) b25,, = b,8, — b,s,.
Then (5.4) gives

—=5t] 032 2 7.
W =§b_2(3yj—sy)v

which is hp(3). Therefore (5.10) is a necessary and sufficient condition
for F' to be of Douglas type.
Thus we have the following :

THEOREM 5.1. Let F™ be a Finsler space (n > 2) with an (a, 53)-
metric L satisfying (3.1) and b # C. Suppose F™ is a Douglas space
and F" is a Finsler space which 1s obtained from a special Randers
change of F™(n > 2) by B. Then F (n > 2) 1s also a Douglas space if
and only if the equation (5.10) holds.

6. Berwald space with a Kropina type

In this section, in order to compare with the Douglas space with
respect to the Finsler space F™ with the Kropina type, we deal with a
condition for which the Finsler space F'* satisfying (4.1) is a Berwald
space.

Since BT ([15]) is L-metrical, the equation 8,I — G¥,8,L = 0 is
rewritten as follows:

(61) Langzyjyk - GLB(bz 7 Bjk’lbk)yj$

where yr = ar,y*. In the following, the raising and lowering of indices
are done by means of the Riemannian a,,(z). Substituting (4.2} in
(6.1), we obtain

(6.2) 2c18B,%. 57y + (c28% — c10?)(B,*,b, — b,.)y° = 0.
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Now, we assume that the Finlser space F™ with an (a, )-metric
given by (4.1) is a Berwald space, that is, G,'x is a function of the
position alone, or we have B:,k2 = B,*,(z). Then the left-hand side

of the above equation is a polynomial of order three in (y*) and, this
guarantees the existence of function p,(z) satisfying

(6.3.1) B .y = pu () (2 — c10?),
(6.3.2) (b, — B,%.bi )y = 2¢1p.(2)8.
Using yi = axy' and differentiating (6.3.1) by y™ and y™, we get
(6.4) B, .aa(62,6, + 88,) = pu(x){cabybe — c10,0) (8585 + 6185,
Thus (6.4) is rewritten in the form
(6.5) B0k + BaXiaim = 20.(2) (€obmbn — €18mn)-
By Christoffel processes with respect to ¢, m, n to (6.5) we obtain
(6.6) BonF .tk =p. (2)(cobmbn — €1amn) + Pm(2){Cobnb, — C10n)
— pn(z)(C2bibm — C1Gum)-
Transvecting {6.6) by o™, we have
B, =p.(2) (eabyb* — e16%) + py (w)(cab™b, — 165)
- pk(x)(ozbzb_,, — C18y)-
Differentiating (6.3.2) by 3, we get

(6.7)

(6.8) by, = B,*.bi, + 2¢1p,(2)b,-
Substituting (6.7) in (6.8), we obtain
(6 Q) bj,z :(CQbQ + cl)pz(x)bj + (C2b2 - C])pj (x)bz

- 'Pb(c‘zbzbg - clatj)a
where py = bpp® ().

Conversely, if there exists a vector p,(z) satislying (6.9), then we
have L = 0 with respect to G,* = 7,*x + B,"k, where B’y is given
by (6.7). Hence, by the well-known Hashiguchi-Ichijys's theorem ({6]),
the Finsler space is a Berwald space.

Thus we have the following :
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THEOREM 6.1. Let F™ be the Finsler space with an («, 3)-metric
given by (4.1) and the Berwald connection BT' = (G,*;,G*;,0) given
by G*, = o', + B, G)'r =1, x + B,'x. Then F™ isa Berwald space
if and only of there exists a covariant vector p,(z) satisfying (6.9), and
the Berwald connection is written as (7,*x+ B, x, 70*, + Bo*;,0), where
By are given by (6.7).
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