FINSLER SPACES WITH CERTAIN (α, β) -METRIC OF DOUGLAS TYPE

HONG-SUH PARK AND YONG-DUK LEE

ABSTRACT. We shall find the condition for a Finsler space with a special (α, β) -metric $L(\alpha, \beta)$ satisfying $L^2 = 2\alpha\beta$ to be a Douglas space. The special Randers change of the above Finsler metric by β is also studied.

1. Introduction

A Finsler space F^n with vanishing Douglas tensor D is called of Douglas type or Douglas space([2], [5]). It is known that if a Finsler space F^n is projective to a Berwald space, then F^n is a Douglas space [1]. Recently S. Bácsó and M. Matsumoto [2] introduced the new notion of Douglas space as a generalization of Berwald space from the view point of geodesic equation in the Finsler space. A Finsler metric L(x,y) is called an (α,β) -metric, when L is a positively homogeneous function $L(\alpha,\beta)$ of the first degree in two variables: $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ and 1-form $\beta = b_i(x)y^i$. The (α,β) -metric L satisfying $L^2 = 2\alpha\beta$ is one of the generalized Randers metric $L^2 = c_1\alpha^2 + 2c_2\alpha\beta + c_3\beta^2$, where c_i are constants ([1], [9]). Some properties of the Finsler metric L satisfying $L^2 = 2\alpha\beta$ have been investigated by S. Hōjō ([4]).

The present paper is devoted to studying the condition for a Finsler space with (α, β) -metric satisfying $L^2 = 2\alpha\beta$ to be of Douglas type. The Randers metric $L = \alpha + \beta$ is considered as the modification of a Riemannian metric α by 1-form β . We consider generally the change of Finsler metric $L \longrightarrow \bar{L} = L + \rho$, where ρ is a 1-form. This change is called the Randers change by ρ . In the last section, we consider a

Received January 20, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 53B40.

Key words and phrases: Randers change, special (α, β) -metric, hp(3), Douglas type, Berwald space.

special Randers change of Finsler space with (α, β) -metric L satisfying $L^2 = 2\alpha\beta$ by β which coincides with 1-form β of the metric L, and devoted to studying the Douglas space obtained by Randers change by β .

2. Preliminaries

Geodesics of an *n*-dimensional Finsler space $F^n = (M^n, L)$ are given by the system of differential equations ([1]):

$$\frac{d^2x^i}{dt^2}y^j - \frac{d^2x^j}{dt^2}y^i + 2\{G^i(x,y)y^j - G^j(x,y)y^i\} = 0, \quad y^i = \frac{dx^i}{dt},$$

in parameter t. The functions $G^{i}(x,y)$ are given by

$$2G^{i}(x,y) = g^{ij}(x,y)(y^{r}\dot{\partial}_{i}\partial_{r}F - \partial_{i}F),$$

where $\dot{\partial}_i = \partial/\partial y^i$, $\partial_i = \partial/\partial x^i$, $F = L^2/2$ and $g^{ij}(x,y)$ is the inverse of Finsler metric $g_{ij}(x,y)$. The Finsler space F^n is said to be of *Douglas type* or called a *Douglas space* if the *Douglas tensor D* with components

$$D_h{}^i{}_{jk} = G_h{}^i{}_{jk} - \frac{1}{n+1}(G_{hjk}y^i + G_{hj}\delta^i_k + G_{jk}\delta^i_h + G_{kh}\delta^i_j)$$

vanishes identically, where $G_h{}^i{}_{jk} = \dot{\partial}_h G_j{}^i{}_k$ is the hv-curvature tensor of the Berwald connection $B\Gamma = (G_j{}^i{}_k, G^i{}_j, 0), G_{ij} = G_i{}^r{}_{jr}$ and $G_{ijk} = \dot{\partial}_k G_{ij}$ ([1], [5]). The Douglas tensor D is invariant under projective change in F^n . If F^n is projective to a Berwald space, then F^n is a Douglas space, that is, D = 0. It is shown that D = 0 is one of half of the necessary and sufficient conditions for a generalized affine space to be a projectively flat. We put

(2.1)
$$D^{ij} = G^{i}(x, y)y^{j} - G^{j}(x, y)y^{i}.$$

It is known that F^n is of Douglas type if and only if D^{ij} defined by (2.1) are homogeneous polynomials in (y^i) of degree three [2]. We shall denote the homogeneous polynomials in (y^i) of degree r by hp(r) for brevity. The space $R^n = (M^n, \alpha)$ is called the Riemannian space associated with F^n . In R^n , we have the covariant differentiation (;) with respect to the Levi-Civita connection $\{j_k^i\}(x)$. We shall use the symbols as follows:

$$r_{ij} = \frac{1}{2}(b_{i;j} + b_{j;i}), \quad s_{ij} = \frac{1}{2}(b_{i;j} - b_{j;i}), \quad s_{j}^{i} = a^{ir}s_{rj}, \quad s_{j} = b_{r}s_{j}^{r}.$$

According to [7] the functions $G^i(x,y)$ of F^n with (α,β) -metric $L(\alpha,\beta)$ are written in the form

$$(2.2) \hspace{1cm} 2G^{i} = \{_{j}{}^{i}{}_{k}\}(x)y^{j}y^{k} + 2B^{i}(x,y),$$

$$B^{i} = \left\{\frac{\beta L_{\beta}}{\alpha L}y^{i} - \frac{\alpha L_{\alpha\alpha}}{L_{\alpha}}(\frac{1}{\alpha}y^{i} - \frac{\alpha}{\beta}b^{i})\right\}C^{*} + \frac{\alpha L_{\beta}}{L_{\alpha}}s^{i}{}_{0},$$

where $L_{\alpha} = \partial L/\partial \alpha$, $L_{\beta} = \partial L/\partial \beta$, $L_{\alpha\alpha} = \partial^2 L/\partial \alpha \partial \alpha$, the subscript 0 means the contraction by y^i and put

$$C^* = rac{lphaeta(r_{00}L_lpha - 2lpha s_0L_eta)}{2(eta^2L_lpha + lpha\gamma^2L_{lphalpha})}, \ b^i = a^{ij}b_j, \quad b^2 = a^{ij}b_ib_j, \quad \gamma^2 = b^2lpha^2 - eta^2.$$

Since $\{0^i, 0\}(x)$ are hp(2), F^n with (α, β) -metric is of Douglas type, if and only if $B^{ij} \equiv B^i y^j - B^j y^i$ are hp(3). From (2.1) and (2.2), we have

(2.3)
$$B^{ij} = \frac{\alpha L_{\beta}}{L_{\alpha}} (s^{i}_{0}y^{j} - s^{j}_{0}y^{i}) + \frac{\alpha^{2}L_{\alpha\alpha}}{\beta L_{\alpha}} C^{*}(b^{i}y^{j} - b^{j}y^{i}).$$

The following Lemma ([3]) will be useful for our purposes.

LEMMA M. If $\alpha^2 \equiv 0 \pmod{\beta}$, that is, $a_{ij}(x)y^iy^j$ contains $b_i(x)y^i$ as a factor, then the dimension is two and $b^2 = 0$. In this case, we have $\delta = d_i(x)y^i$ satisfying $\alpha^2 = \beta\delta$ and $d_ib^i = 2$.

3. A Finsler space with $L^2 = 2\alpha\beta$

We consider the condition for a Finsler space F^n with (α, β) -metric $L(\alpha, \beta)$ satisfying

$$(3.1) L^2 = 2\alpha\beta$$

to be of Douglas type. Then (2.3) gives

(3.2)
$$2(3\beta^2 - b^2\alpha^2)\{\beta B^{ij} - \alpha^2(s^i{}_0y^j - s^j{}_0y^i)\}$$

$$+ \alpha^2(r_{00}\beta - 2s_0\alpha^2)(b^iy^j - b^jy^i) = 0.$$

Suppose that F^n is of Douglas type, that is, B^{ij} are hp(3). Since the terms $6\beta^3B^{ij}$ of (3.2) seemingly do not contain α^2 , we must have $hp(4): u_4^{ij}$ satisfying

$$(3.3) 6\beta^3 B^{ij} = \alpha^2 u_4^{ij}.$$

First, we are concerned with the case of $\alpha^2 \equiv 0 \pmod{\beta}$. In this case, n = 2, $b^2 = 0$ and $\alpha^2 = \beta \delta$ by Lemma M.

According to [1], the main scalar I of F^2 with (α, β) -metric is defined by

$$\epsilon I^2 = \frac{1}{\alpha^2 T^3} (T_\beta F)^2 (b^2 - \frac{\beta^2}{\alpha^2}),$$

where $\epsilon = \pm 1$ and $T = 2FF_{\alpha}/\alpha^3 + (2FF_{\beta\beta} - F_{\beta}^2)(b^2 - \beta^2/\alpha^2)/\alpha^2$. Hence in two dimensional Finsler space with $L(\alpha, \beta)$ satisfying (3.1), we obtain $\epsilon I^2 = -4/3$, that is, the main scalar I is a constant. Thus F^2 with (3.1) is a Berwald space ([1]).

Second, we are concerned with the case of $\alpha^2 \not\equiv 0 \pmod{\beta}$. From (3.3), there exists hp(1) such that

$$(3.4) 6B^{ij} = \alpha^2 u^{ij}.$$

Therefore, we get $u_4^{ij} = \beta^3 u^{ij}$. Hence (3.2) can be rewritten in the form

(3.5)
$$(3\beta^2 - b^2\alpha^2)\{\beta u^{ij} - 6(s^i{}_0y^j - s^j{}_0y^i)\}$$

$$+ 3(r_{00}\beta - 2s_0\alpha^2)(b^iy^j - b^jy^i) = 0.$$

The terms which seemingly do not contain β in (3.5) are

$$6b^2\alpha^2(s^i_0y^j-s^j_0y^i)-6s_0\alpha^2(b^iy^j-b^jy^i).$$

Therefore we must have $hp(3): v_3^{ij}$ such that

$$6\alpha^2\{b^2(s^i{}_0y^j-s^j{}_0y^i)-s_0(b^iy^j-b^jy^i)\}=\beta v_3^{ij},$$

which implies

(3.6)
$$b^2(s^i{}_0y^j - s^j{}_0y^i) - s_0(b^iy^j - b^jy^i) = \beta v^{ij},$$

where v^{ij} are hp(1) satisfying $v_3^{ij} = 6\alpha^2 v^{ij}$. Thus (3.5) is rewritten as

$$(3.7) \quad (3\beta^2 - b^2\alpha^2)(b^2u^{ij} - 6v^{ij}) + 3(b^2r_{00} - 6s_0\beta)(b^iy^j - b^jy^i) = 0.$$

On the other hand, we put $v^{ij} = v_k^{ij}(x)y^k$. Then (3.7) is written as

$$(3.8) \ b^2\{(s^i{}_h\delta^j_k+s^i{}_k\delta^j_h)-[i,j]\}-\{b^i(s_h\delta^j_k+s_k\delta^j_h)-[i,j]\}=b_hv^{ij}_k+b_kv^{ij}_h,$$

where [i, j] denotes the interchange of indices i, j of previous terms. Contracting j and k, from (3.8) we obtain the following form:

(3.9)
$$n(b^2s^i_h - b^is_h) = b_h v_r^{ir} + b_r v_h^{ir}.$$

Transvection of (3.8) by $b_i b^h$ is reduced to

$$(3.10) b^2(b^2s^i_k - s^ib_k - b^is_k) = b^2b_rv_k^{ir} + b_kb_rv_s^{ir}b^s.$$

Furthermore, transvecting (3.10) by b^k , we have

$$(3.11) b_r v_s^{ir} b^s = -b^2 s^i,$$

provided that $b^2 \neq 0$. Substituting (3.11) in (3.10), we get $b_\tau v_k^{ir} = b^2 s^i{}_k - b^i s_k$ and (3.9) is rewritten as

$$(n-1)(b^2s^i{}_h - b^is_h) = b_h v_r^{ir}.$$

Consequently, if we put $v_j = (a_{ij}v_r^{ir})/(n-1)$, then we have

$$(3.12) b^2 s_{ih} = v_i b_h + b_i s_h.$$

Since s_{ih} is skew symmetric, we have $(v_i b_h + b_i s_h) y^i y^h = 0$, which implies $\beta(v_i + s_i) y^i = 0$, that is, $v_i = -s_i$. Hence, from (3.12) we have

(3.13)
$$s_{ih} = \frac{1}{b^2} (b_i s_h - b_h s_i).$$

Thus (3.6) is reduced to $v^{ij} = y^i s^j - y^j s^i$ and (3.7) is rewritten as

(3.14)
$$(3\beta^2 - b^2\alpha^2)\{b^2u^{ij} - 6(y^is^j - y^js^i)\}$$

$$+ 3(b^2r_{00} - 6\beta s_0)(b^iy^j - b^jy^i) = 0.$$

Transvecting (3.14) by $b_i s_j$, we have

$$(3.15) \quad (3\beta^2 - b^2\alpha^2)(b^2u^{ij}b_is_j - 6s^js_j\beta) + 3(b^2r_{00} - 6s_0\beta)b^2s_0 = 0.$$

Suppose that there exists $u = u(x)y^i$ such that $3\beta^2 - b^2\alpha^2 = b^2s_0u$. Then this is written in the form $2(3b_ib_j - b^2a_{ij}) = b^2(s_iu_j + s_ju_i)$. Transvection of this equation by b^ib^j gives $b^2 = 0$, which is a contradiction. Consequently (3.15) shows that we have a function k = k(x) satisfying

$$(3.16) b^2 u^{ij} b_i s_j - 6s^j s_j \beta = kb^2 s_0, \quad 3(b^2 r_{00} - 6s_0 \beta) = k(b^2 \alpha^2 - 3\beta^2).$$

From the latter of (3.16), we have

$$b^2 r_{00} = \frac{k}{3} (b^2 \alpha^2 - 3\beta^2) + 6s_0 \beta,$$

which implies

(3.17)
$$r_{ij} = \frac{1}{b^2} \left\{ \frac{k}{3} (b^2 a_{ij} - 3b_i b_j) + 6(s_i b_j + s_j b_i) \right\}.$$

From (3.13) and (3.17), we have

(3.18)
$$b_{i;j} = \frac{1}{b^2} \left\{ \frac{k}{3} (3b_i b_j - b^2 a_{ij}) + (7b_i s_j + 5b_j s_i) \right\}.$$

Conversely, if (3.18) holds, then we see that

$$B^{ij} = \frac{\alpha^2}{b^2} \Big\{ (y^i s^j - y^j s^i) - \frac{k}{3} (b^i y^j - b^j y^i) \Big\},$$

are hp(3), that is, F^n is a Douglas space. Thus we have

THEOREM 3.1. Let F^n be a Finsler space with (α, β) -metric L satisfying (3.1).

- (1) $\alpha^2 \equiv 0 \pmod{\beta}$: n = 2, and F^2 is a Berwald space with constant main scalar.
- (2) $\alpha^2 \not\equiv 0 \pmod{\beta}$: F^n with non-zero b^2 is of Douglas type, if and only if $b_{i;j}$ are given by (3.18), where k = k(x).

4. A special Randers change by β

We consider the condition for a Finsler space which is obtained by a special Randers change by β of the Finsler metric L satisfying (3.1) to be of Douglas type, where the modified 1-form ρ coincides with β of (3.1).

Let $\overline{F}^n = (M^n, \overline{L})$ be a Finsler space which is obtained by Randers change of L satisfying $L^2 = 2\alpha\beta$ by β . Since $\overline{L} = 2\alpha\beta + \beta$ is also an (α, β) -metric, (2.3) in \overline{F}^n gives $\overline{B}^{ij} = B^{ij} + W^{ij}$, where

(4.1)
$$\begin{split} W^{ij} &= \frac{\alpha E}{\beta} (s^i{}_0 y^j - s^j{}_0 y^i) \\ &+ \frac{s_0 \alpha^3 E}{\beta (3\beta^2 - b^2 \alpha^2)} (b^i y^j - b^j y^i), \end{split}$$

and $E = (2\alpha\beta)^{1/2}$. Thus we have

PROPOSITION 4.1. Let a Finsler space F^n with an (α, β) -metric L satisfying (3.1) be a Douglas space and \overline{F}^n a Finsler space which is obtained by the special Randers change F^n by β . Then \overline{F}^n is also a Douglas space, if and only if W^{ij} are hp(3).

Equation (4.1) is rewritten as

$$\begin{split} \beta(3\beta^2 - b^2\alpha^2)W^{ij} - \alpha E\{(3\beta^2 - b^2\alpha^2)(s^i{}_0y^j - s^j{}_0y^i) \\ + s_0\alpha^2(b^iy^j - b^jy^i)\} = 0. \end{split}$$

Suppose W^{ij} are hp(3). Since αE is irrational, we have

(4.2)
$$\beta(3\beta^2 - b^2\alpha^2)W^{ij} = 0,$$

$$(3\beta^2 - b^2\alpha^2)(s^i{}_0y^j - s^j{}_0y^i) + s_0\alpha^2(b^iy^j - b^jy^i) = 0.$$

Transvecting (4.3) by $b_i y_j$, we get $2s_0 \alpha^2 \beta^2 = 0$, that is, $s_0 = 0$. From this and (4.3), we get $s_{ij} = 0$. Therefore we get $W^{ij} = 0$ from (4.1), that is, $\overline{B}^{ij} = B^{ij}$. Thus we have

PROPOSITION 4.2. Let a Finsler space F^n with an (α, β) -metric L satisfying (3.1) be a Douglas space and \overline{F}^n a Finsler space which is obtained by the special Randers change of F^n by β . Then \overline{F}^n is also a Douglas space.

Now we shall find the condition that \overline{F} is of Douglas type. Since \overline{L} is also an (α, β) -metric, (2.2) is reduced to

(4.4)
$$2(3\beta^2 - b^2\alpha^2)\{\beta \overline{B}^{ij} - \alpha(\alpha + E)(s^i{}_0y^j - s^j{}_0y^i)\}$$

$$+ \alpha^2\{r_{00}\beta - 2s_0\alpha(\alpha + E)\}(b^iy^j - b^jy^i) = 0.$$

Transvecting (4.4) by $b_i y_i$, we get

(4.5)
$$2(3\beta^2 - b^2\alpha^2)\beta \overline{B}^{ij}b_i y_j - 2s_0(3\beta^2 - b^2\alpha^2)\alpha^4$$

$$+ \alpha^2(r_{00}\beta - 2s_0\alpha^2)(b^2\alpha^2 - \beta^2) - 4s_0\alpha^3\beta^2 E = 0.$$

Suppose that \overline{F}^n is of Douglas type, that is, \overline{B}^{ij} are hp(3). Since $\alpha^3 E$ is an irrational in (y^i) , we have $s_0 = 0$, that is, $s_i = 0$. Substituting this in (4.5), we have

(4.6)
$$2(3\beta^2 - b^2\alpha^2)\overline{B}^{ij}b_iy_j = \alpha^2 r_{00}(b^2\alpha^2 - \beta^2).$$

For $b^2 \neq 0$, if $(b^2\alpha^2 - \beta^2)$ is a divisor of $3\beta^2 - b^2\alpha^2$, then we must have a function f = f(x) such that $3\beta^2 - b^2\alpha^2 = f(b^2\alpha^2 - \beta^2)$. This is written in the form

$$3b_i b_j - b^2 a_{ij} = f(b_i b_j - b^2 a_{ij}).$$

Transvection of the above by $b^i b^j$ gives $b^2 = 0$, which is a contradiction. Therefore, for $b^2 \neq 0$, there exists a function g = g(x) such that $3\beta^2 - b^2\alpha^2 = r_{00}g$, from which

(4.7)
$$r_{ij} = h(3b_ib_j - b^2a_{ij}),$$

where h = 1/g.

On the other hand, from $s_0 = 0$, (4.4) is reduced to

(4.8)
$$2(3\beta^2 - b^2\alpha^2)\{\beta \overline{B}^{ij} - \alpha(\alpha + E)(s^i{}_0y^j - s^j{}_0y^i)\}$$
$$+ \alpha^2 r_{00}\beta(b^iy^j - b^jy^i) = 0.$$

The terms which seemingly do not contain β in (4.8) are

$$2b^2\alpha^3(\alpha+E)(s^i{}_0y^j-s^j{}_0y^i).$$

First, we suppose $\alpha^2 \not\equiv 0 \pmod{\beta}$. Since β is not a factor of $\alpha + E$, we have $hp(1): w^{ij} = w_k^{ij}(x)y^k$ such that

$$2b^2(s^i{}_0y^j - s^j{}_0y^i) = \beta w^{ij}.$$

The above equation is written as

$$(4.9) 2b^2(s^i{}_h\delta^j_k - s^j{}_h\delta^i_k + s^i{}_k\delta^j_h - s^j{}_k\delta^i_h) = b_hw_k^{ij} + b_kw_h^{ij}.$$

Contraction of (4.9) by j = k yields

$$(4.10) 2nb^2s^i{}_h = b_h w_r^{ir} + b_r w_h^{ir}.$$

On the other hand, transvection of (4.9) by $b_j b^k$ yields

$$(4.11) 2b^4 s^i{}_h = b_h b_r b^s w_s^{ir} + b^2 b_r w_h^{ir}.$$

Furthermore, transvecting (4.11) by b^h , we have $b_r b^s w_s^{ir} = 0$ because of $s_i = 0$ and $b^2 \neq 0$. Hence (4.11) gives $2b^2 s^i{}_h = b_r w_h^{ir}$ and (4.10) is rewritten as $2(n-1)b^2 s^i{}_h = b_h w_r^{ir}$. Consequently, if we put $w_j = (a_{ij}w_r^{ir})/2(n-1)$, then we have $b^2 s_{ih} = w_i b_h$, from which $w_i = -s_i$ (=0), and hence $s_{ij} = 0$. Therefore, from (4.7) we have

$$(4.12) b_{i;j} = h(3b_ib_j - b^2a_{ij}).$$

Conversely, if (4.12) holds, then $r_{00} = h(3\beta^2 - b^2\alpha^2)/2$ and $s_{ij} = 0$, which implies $s_0 = 0$. Hence we see that \overline{B}^{ij} is hp(3) from (4.4), that is, \overline{F}^n is a Douglas space.

Second, in the case of $\alpha^2 \equiv 0 \pmod{\beta}$, n = 2, $b^2 = 0$ and $\alpha^2 = \beta \delta$ by Lemma M. Then from (4.5)

$$6\overline{B}^{ij}b_iy_i - 6s_0\beta\delta^2 - \beta\delta(r_{00}\beta - s_0\delta) - 4s_0\alpha\delta E = 0.$$

Since αE is an irrational in (y^i) , we have $s_0 = 0$. Substituting this and $b^2 = 0$ in (4.4), we get

$$6\beta^{2} \{ \beta \overline{B}^{ij} - \beta \delta(s^{i}_{0}y^{j} - s^{j}_{0}y^{i}) \} + r_{00}\beta^{2}\delta(b^{i}y^{j} - b^{j}y^{i})$$
$$-6\beta^{2}\alpha E(s^{i}_{0}y^{j} - s^{j}_{0}y^{i}) = 0.$$

The above equation is divided into two following equations

(4.13)
$$6\beta\{\overline{B}^{ij} - \delta(s^i{}_0y^j - s^j{}_0y^i)\} + r_{00}\delta(b^iy^j - b^jy^i) = 0,$$
$$6\beta^2(s^i{}_0y^j - s^j{}_0y^i) = 0.$$

From the latter of (4.13), we get $s_{ij} = 0$. Substitution of this in the former of (4.13) leads to

(4.14)
$$6\beta \overline{B}^{ij} + r_{00}\delta(b^i y^j - b^j y^i) = 0.$$

Since $\beta \not\equiv 0 \pmod{\delta}$, there exists a function $\mu = \mu(x)$ such that

(4.15)
$$6\overline{B}^{ij} = -r_{00}(b^i y^j - b^j y^i)\mu.$$

Substituting (4.15) in (4.14), we have

(4.16)
$$r_{00}(\delta - \mu \beta)(b^i y^j - b^j y^i) = 0.$$

Transvecting (4.16) by $b_i y_j$, we get $r_{00} = 0$. From this and $s_{ij} = 0$, we have $b_{i;j} = 0$. Consequently we have

THEOREM 4.3. Let F^n be a Finsler space with an (α, β) -metric $L(\alpha, \beta)$ satisfying (3.1) and \overline{F}^n be a Finsler space which is obtained by a special Randers change by β of F^n . \overline{F}^n is of Douglas type, if and only if

- (1) $\alpha^2 \not\equiv 0 \pmod{\beta}$: $b^2 \neq 0$ and $b_{i,j}$ is satisfied (4.12)
- (2) $\alpha^2 \equiv 0 \pmod{\beta}$: n = 2 and $b_{i:j} = 0$.

References

- P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad., Dordecht, 1993.
- [2] S. Bácsó and M. Matsumoto, On the Finsler spaces of Douglas type. A generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), 385-406.
- [3] M. Hashiguchi, S. Hōjō, and M. Matsumoto, Landsberg spaces of dimension two with (α, β)-metric, Tensor, N. S. 57 (1996), 145-153.
- [4] S. Hōjō, Finsler metric $L^2=2\alpha\beta$, Proceedings of the 27^{th} Symp. on Finsler Geom. at Arima (1992), 125–129.
- [5] M. Matsumoto, Projective changes of Finsler metric and projective flat Finsler space, Tensor, N. S. 34 (1980), 303-315.
- [6] ______, Foundations of Finsler Geometry and Special Finsler spaces, Kaiseisha Press, Otsu, Saikawa, 1986.
- [7] _____, Theory of Finsler spaces with (α, β) -metric, Rep. on Math. Phys. 31 (1992), 43-83.
- [8] _____, Finsler spaces with (α, β) -metric of Douglas type, to appear in Tensor, N. S. **59** (2000).
- [9] H. S. Park and E. S. Choi, On a Finsler space with a special (α, β) -metric, Tensor, N. S. **56** (1995), 142–148.
- [10] _____, Finsler spaces with an approximate Matsumoto metric of Douglas type, Comm. of Korean Math. Soci. 14 (1999), 535-544.

Hong-Suh Park Yeungnam University Department of Mathematics Gyongsan 712-749, Korea

Yong-Duk Lee Yeungnam College of Science and Technology Department of Mathematics Taegu 705-703, Korea E-mail: ydlee@ync.ac.kr