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FINSLER SPACES WITH CERTAIN
(a, 3)-METRIC OF DOUGLAS TYPE

HonNG-SuH PARK AND YONG-DUK LEE

ABSTRACT. We shall find the condition for a Finsler space with a
special (a, 3)-metric L(a, 8) satisfying L? = 2a8 to be a Douglas
space. The special Randers change of the above Finsler metric by
B is also studied.

1. Introduction

A Finsler space F™ with vanishing Douglas tensor D is called of Dou-
glas type or Douglas space([2], [5]). It is known that if a Finsler space
F™ is projective to a Berwald space, then F" is a Douglas space [1].
Recently S.Bécsé and M. Matsumoto [2] introduced the new notion of
Douglas space as a generalization of Berwald space from the view point
of geodesic equation in the Finsler space. A Finsler metric L(z,y) is
called an («, 3)-metric, when L is a positively homogeneous function
L{a, B) of the first degree in two variables: a = \/a;;(z)y*y’ and 1-
form 38 = b;(z)y’. The (a,B)-metric L satisfying L2 = 2043 is one of
the generalized Randers metric L? = c;0? + 2cpa8 + ¢332, where ¢; are
constants ([1}, [9]). Some properties of the Finsler metric L satisfying
L? = 2a0 have been investigated by S. Hojo ([4]).

The present paper is devoted to studying the condition for a Finsler
space with (o, 8)-metric satisfying L? = 2af to be of Douglas type.
The Randers metric L = a + 8 is considered as the modification of a
Riemannian metric o by 1-form 3. We consider generally the change
of Finsler metric L — L = L + p, where p is a 1-form. This change
is called the Randers change by p. In the last section, we consider a
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special Randers change of Finsler space with (a, 8)-metric L satisfying
L? = 2af by 8 which coincides with 1-form § of the metric L, and
devoted to studying the Douglas space obtained by Randers change by

8.
2. Preliminaries

Geodesics of an n-dimensional Finsler space F* = (M™, L) are given
by the system of differential equations ([1]):

d?zt . dPL?

i i j ; i ; drt
¥ gV UG @Y -Gyt =0, ¥ =

dt’

in parameter t. The functions G*(z,y) are given by
2G'(z,y) = 9" (2,9)(y" 0,0, F — O, F),

where 8; = 8/8y?, 8; = 8/0xt, F = L?/2 and ¢% (z,y) is the inverse of
Finsler metric g;;(z,y). The Finsler space F™ is said to be of Douglas
type or called a Douglas space if the Douglas tensor D with components

. . 1 . ) . .
Dhljk = Ghljk - m(Ghjkyl + Gh]‘ai -+ ij(sh + Gkh(S;)

vanishes identically, where G’ jk = 3thi x 18 the hv-curvature tensor
of the Berwald connection BT' = (G'jik, G';,0), G;j = Gi" jr and Gyjp =
Gy ([1], [5]). The Douglas tensor D is invariant under projective
change in F™. If F" is projective to a Berwald space, then F” is a
Douglas space, that is, D = 0. It is shown that D = 0 is one of half of
the necessary and sufficient conditions for a generalized affine space to
be a projectively flat. We put

(2.1) DY = G'(z,y)y’ - G’ (z,y)y".

It is known that F™ is of Douglas type if and only if D defined by (2.1)
are homogeneous polynomials in (y*) of degree three [2]. We shall denote
the homogeneous polynomials in (y*) of degree r by hp(r) for brevity.
The space R* = (M™, a) is called the Riemannian space associated with
F™, In R™, we have the covariant differentiation (;) with respect to the
Levi-Civita connection {;%, }(z). We shall use the symbols as follows:

1 1

Tij = Z(bi;j +bji)y  Sij = 5(%‘ —bji), §';=a"s;, s;=0bps";
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According to [7] the functions G*(z, y) of F™ with (o, §)-metric L(c, §)
are written in the form
2G* = {;k }(2)y’y* + 2B (z,v),
(22) i BLg i olaa, 1l ; o ., olg
B = {5 - 2= - o o+ P2

where Ly, = OL/da,Lg = 8L/8B, Loo = 0*L/Bada, the subscript 0
means the contraction by y* and put

_aﬂ(rooLa — 2aSOLﬁ)

T 2(82Lg +ay2Llgy)

b* =ab;, b =a"bb;, v =0b%?- G2

C*

Since {o%0}(z) are hp(2), F™ with (a, 3)-metric is of Douglas type, if
and only if B = Bty — By’ are hp(3). From (2.1) and (2.2), we have

o’L o
ax vk (pi, G )
BL. C*(b'y’ - b'y").

The following Lemma ([3]) will be useful for our purposes.

aLg
L,

(2.3)  BY = (sl — sToyi) +

LEMMA M.  If o? = 0(mod. §), that is, a;;(x)y*y’ contains b;(x)y’
as a factor, then the dimension is two and b? = 0. In this case, we have
§ = d;(z)y" satisfying a®> = 36 and d;b* = 2.

3. A Finsler space with L? = 2a8
We consider the condition for a Finsler space F” with (a, 3)-metric
L(a, B) satisfying
(3.1) L% =208
to be of Douglas type. Then (2.3) gives
652) 2(3/622 — b%a?){BBY ~'a""(siogﬂ"- s'0y")}
+a®(ro0B — 2s00%)(b'y? — by*) = 0.

Suppose thap_ F™ is of Douglas type, that is, BY are hp(3). Since the
terms 64°B* of (3.2) seemingly do not contain o, we must have hp
(4) : uy satisfying

(3.3) 60°BY = o?uy.
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First, we are concerned with the case of a® = 0(mod. 8). In this case,
n =2, b2 =0 and o? = 36 by Lemma M.

According to [1], the main scalar I of F? with («, 3)-metric is defined
by

el? = L(T F)?(b% - 5—2)
23\ P a2’

where € = +1 and T = 2FF,/a® + (2FFg5 — F3%)(b? — 32/a?)/a?.
Hence in two dimensional Finsler space with L(«, 3) satisfying (3.1), we
obtain eI? = —4/3, that is, the main scalar I is a constant. Thus F?
with (3.1) is a Berwald space ([1]).

Second, we are concerned with the case of o? # 0(mod.3). From
(3.3), there exists hp(1) such that

(3.4) 6BY = o*u'.
Therefore, we get u; = §3u®. Hence (3.2) can be rewritten in the form

(387 — b%a*){Bu” — 6(s'oy’ — s 0y")}

(3.5) o i .
+ 3(rooB — 2s00”) (b'y? — by") =0.

The terms which seemingly do not contain 8 in (3.5) are

6b2a” (stoy’ — 7 oyt) — 6500’ (b'y’ — byt).
Therefore we must have hp(3) : v such that

6a2{b?(s'oy’ — sToy") — so(b'y’ — by} = B,

which implies
(3.6) b2 (siey’ — 87 0yt) — so(by? — blyt) = Bu¥,
where v are hp(1) satisfying v¥ = 6a2v¥. Thus (3.5) is rewritten as
(3.7) (387 — b2a®)(b*u™ — 6v") + 3(b%roo — 6508)(b'y’ — ¥'y') = 0.
On the other hand, we put v*/ = v} (z)y*. Then (3.7) is written as

(3.8) b2{(s*n&%+5"80)—[i, 4]} — {b* (80 8] +5k6) ~[i, 51} = brvy +bevy?,
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where [i,j] denotes the interchange of indices 7,j of previous terms.
Contracting j and k, from (3.8) we obtain the following form :

(3.9) n(b?s'y, — b'sp) = b + byuiT.
Transvection of (3.8) by b;b" is reduced to

(3.10) b2 (b%s'y — s'by, — bPsy) = b2b,vi" + brb,vTbS.
Furthermore, transvecting (3.10) by b*, we have

(3.11) bov'"b* = —b2st,

provided that b # 0. Substituting (3.11) in (3.10), we get bvi" =
b2s'y, — bisy, and (3.9) is rewritten as

(n - 1)(b2sih —_ bish) = bh'U;L;T.
Consequently, if we put v; = (a;;v:")/(n — 1), then we have
(3.12) b2s,-h = v;by, + b;sp.

Since s;5, is skew symmetric, we have (v;by +b;55)y*y" = 0, which implies

B(vi + s;)y* = 0, that is, v; = —s;. Hence, from (3.12) we have

1
(3.13) Sip = b—2(bi$h - thi).

Thus (3.6) is reduced to v¥ = y’s’ — y7s' and (3.7) is rewritten as
382 — b?a?){b*u — 6(y's’ — ¢ st

(3.14) (36 2 ) 6y's’ — 78}

+ 3(b*rgp — 60s0)(b'y’ — ¥ y*) = 0.

Transvecting (3.14) by b;s;, we have
(315) (3B2 - b2a2)(b2uijbisj - GSijB) + 3(b27'00 - 680,8)()280 =0.

Suppose that there exists u = u(z)y* such that 38% —b%a? = b%squ. Then
this is written in the form 2(3b;b; — b%a;;) = b%(s;u; + s;u;). Transvec-
tion of this equation by b*b gives b> = 0, which is a contradiction.
Consequently (3.15) shows that we have a function k = k(z) satisfying

(316) bzuijbisj - GSij,B = kb230, 3(b2’f‘00 - 680ﬂ) = k(b2(12 — 3ﬂ2)
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From the latter of (3.16), we have

b27'00 = g(b2012 - 3,@2) + 680,6,

which implies

By

1
= b—2{—(b2a1~j - 3bzb]) + 6(81'bj + Sjbi)}.

From (3.13) and (3.17), we have

1k
(3.18) by = §{§(3bibj — b%a;;) + (This; + 5bjsi)}.
Conversely, if (3.18) holds, then we see that

. o? . . k .. o
BY = b—Q{(y’sJ —y's’) — g0y - Hy’)},

are hp(3), that is, F'" is a Douglas space. Thus we have

(317) rij

w

THEOREM 3.1. Let F™ be a Finsler space with («,3)-metric L
satisfying (3.1).
(1) a? = 0(mod.B3): n = 2, and F? is a Berwald space with constant
main scalar.
(2) a? # 0(mod. B): F™ with non-zero b* is of Douglas type, if and only
if b;;; are given by (3.18), where k = k(z).

4. A special Randers change by g

We consider the condition for a Finsler space which is obtained by
a special Randers change by 3 of the Finsler metric L satisfying (3.1)
to be of Douglas type, where the modified 1-form p coincides with 3 of
(3.1).

Let F' = (M™, L) be a Finsler space which is obtained by Randers
change of L satisfying L? = 2a3 by 8. Since L = 208 + § is also an
(o, B)-metric, (2.3) in F gives B” = B + W/, where
W = %(Sloyj —s’oy")

+

(4.1) 500®E

B(38% — b%a?)
and F = (2a3)/2. Thus we have

(biyj - byyl),



Finsler spaces with certain (a, 8)-metric of Douglas type 655

PROPOSITION 4.1.  Let a Finsler space F™ with an (a, (3)-metric
L satisfying (3.1) be a Douglas space and F" a Finsler space which is
obtained by the special Randers change F" by (3. Then F" is also a
Douglas space, if and only if W* are hp(3).

Equation (4.1) is rewritten as

B(38% — b*a®)Wi — aE{(36?% — b%a?)(s'0y’ — s70y?)
+ spa?(b'y? — by')} = 0.

Suppose W% are hp(3). Since aF is irrational, we have

(4.2) B(38% — b2a?)W* =0,

(4.3) (36% — b2a®)(s'oy’ — s70y?) + 500 (biy’ — by') = 0.

Transvecting (4.3) by b;y;, we get 2s002% = 0, that is, so = 0. From
this and (4.3), we get s;; = 0. Therefore we get Wi = 0 from (4.1),
that is, B~ = Bi. Thus we have

PROPOSITION 4.2.  Let a Finsler space F™ with an (a, 3)-metric
L satisfying (3.1) be a Douglas space and F' a Finsler space which is
obtained by the special Randers change of F™ by 3. Then F" is also a
Douglas space.

Now we shall find the condition that F is of Douglas type. Since L
is also an («, B)-metric, (2.2) is reduced to

2(38% — 2a?){FB” — a(a + E)(s'oy’ ~ '0y’)}

(4.4) . A
+ a*{roo — 2spa(a + E)}(b'y’ — ¥y') = 0.

Transvecting (4.4) by b;y;, we get

2(38 — b2a?)BB  biy; — 250(35% — b*a?)at

(4.5) 2 2\/12 2 2 342
+ a*(rgof — 2spa)(b*a” — B°) — 4s0a”°3°E = 0.



656 Hong-Suh Park and Yong-Duk Lee

Suppose that F is of Douglas type, that is, BY are hp(3). Since a’FE
is an irrational in (y*), we have so = 0, that is, s; = 0. Substituting this
in (4.5), we have

(4.6) 2(362 — b2a?) B  biy; = o?roo(b2a? — 52).
For b? # 0, if (b%a? — 3?) is a divisor of 332 — b%a?, then we must have a
function f = f(z) such that 38?2 — b%a? = f(b%a? — 3?). This is written

in the form
3b;b; — b%a;; = f(bibj — bay;).

Transvection of the above by b*b/ gives b? = 0, which is a contradiction.
Therefore, for b2 # 0, there exists a function g = g(z) such that 332 —
b%0? = rgog, from which

(4.7) T,;j = h(3b,b] - b2a¢j),

where h = 1/g.
On the other hand, from sg = 0, (4.4) is reduced to

wg 265 -FaNEB —ale+ B)soy’ - o))
' +a’ref(b'y’ — by') = 0.
The terms which seemingly do not contain 3 in (4.8) are

2620 (o + E)(s'oy? — s70y").

First, we suppose a? # 0(mod. ). Since 3 is not a factor of a + E,
we have hp(1) : w" = w} (z)y* such that

2b2(s'gy’ — s7oy’) = Bw.
The above equation is written as
(4.9)  26%(s°h8] — 8740% + 'k 0L — 8740%) = brw) + brw).
Contraction of (4.9) by j = k yields

4.10 2nb?sty = bpwt” + bwi’.
T h
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On the other hand, transvection of (4.9) by b,;b* yields
(4.11) 2b% sy, = bbb W' + b2bwi.

Furthermore, transvecting (4.11) by b*, we have bbSwir = 0 because
of s; = 0 and b®> # 0. Hence (4.11) gives 2b%s’;, = b,w!" and (4.10)
is rewritten as 2(n — 1)b%s’y, = byw;". Consequently, if we put w; =

(a;;wi)/2(n — 1), then we have b%s;, = w;bs, from which w; = —s;
(= 0), and hence s;; = 0. Therefore, from (4.7) we have
(4.12) bi;j = h(3bzb_7 - bzaij).

Conversely, if (4.12) holds, then o0 = h(38% — b%a?)/2 and s;; = 0,
which implies sy = 0. Hence we see that B is hp(3) from (4.4), that
is, F'isa Douglas space.
Second, in the case of o = 0(mod. 8), n =2, b*> = 0 and o? = 36 by
Lemma M. Then from (4.5)
6B biy; — 630862 — B8(ro0fl — 506) — 4s0adE = 0.

Since oF is an irrational in (y'), we have so = 0. Substituting this and
b2 =0 in (4.4), we get

65°{8B"” — B3(s'oy’ — sToy")} + r00B26(b'y7 — by)
— 66%aE(s" 0y’ — s/oy’) = 0.
The above equation is divided into two following equations
66{3“ —8(s*0y’ — s70y")} + roed(bly’ — byt) =0,
66%(s'oy’ — s7py') = 0.

From the latter of (4.13), we get s;; = 0. Substitution of this in the
former of (4.13) leads to

(4.13)

(4.14) 68B" + rood(biy’ — byt) = 0.

Since 8 # 0(mod. §), there exists a function p = u(z) such that
(4.15) 6B = —roo(biy! — by

Substituting (4.15) in (4.14), we have

(4.16) ro0(8 — uB)(b'y’ — bly') = 0.

Transvecting (4.16) by b;y,, we get rgop = 0. From this and s;; =0, we
have b;;; = 0. Consequently we have
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THEOREM 4.3. Let.F™ be a Finsler space with an (a, 3)-metric

L(a, B) satisfying (3.1) and F be a Finsler space which is obtained by
a special Randers change by (3 of F™. F'is of Douglas type, if and only

if

(1)
(2)

1l

[6]
[7]
(8]
[9]

[10]

a? # 0(mod. B): b% # 0 and b;; is satisfied (4.12)
a? =0(mod. 8): n =2 and b;;; = 0.
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